Suppr超能文献

基于传感器的坐站测试实现身体虚弱的远程评估。

Toward Remote Assessment of Physical Frailty Using Sensor-based Sit-to-stand Test.

机构信息

Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.

Telehealth Cardio-Pulmonary Rehabilitation Program, Medical Care Line, Michael E. DeBakey VA Medical Center, Houston, Texas.

出版信息

J Surg Res. 2021 Jul;263:130-139. doi: 10.1016/j.jss.2021.01.023. Epub 2021 Feb 27.

Abstract

BACKGROUND

Traditional physical frailty (PF) screening tools are resource intensive and unsuitable for remote assessment. In this study, we used five times sit-to-stand test (5×STS) with wearable sensors to determine PF and three key frailty phenotypes (slowness, weakness, and exhaustion) objectively.

MATERIALS AND METHODS

Older adults (n = 102, age: 76.54 ± 7.72 y, 72% women) performed 5×STS while wearing sensors attached to the trunk and bilateral thigh and shank. Duration of 5×STS was recorded using a stopwatch. Seventeen sensor-derived variables were analyzed to determine the ability of 5×STS to distinguish PF, slowness, weakness, and exhaustion. Binary logistic regression was used, and its area under curve was calculated.

RESULTS

A strong correlation was observed between sensor-based and manually-recorded 5xSTS durations (r = 0.93, P < 0.0001). Sensor-derived variables indicators of slowness (5×STS duration, hip angular velocity range, and knee angular velocity range), weakness (hip power range and knee power range), and exhaustion (coefficient of variation (CV) of hip angular velocity range, CV of vertical velocity range, and CV of vertical power range) were different between the robust group and prefrail/frail group (P < 0.05) with medium to large effect sizes (Cohen's d = 0.50-1.09). The results suggested that sensor-derived variables enable identifying PF, slowness, weakness, and exhaustion with an area under curve of 0.861, 0.865, 0.720, and 0.723, respectively.

CONCLUSIONS

Our study suggests that sensor-based 5×STS can provide digital biomarkers of PF, slowness, weakness, and exhaustion. The simplicity, ease of administration in front of a camera, and safety of 5xSTS may facilitate a remote assessment of PF, slowness, weakness, and exhaustion via telemedicine.

摘要

背景

传统的身体虚弱(PF)筛查工具资源密集且不适合远程评估。在这项研究中,我们使用带有可穿戴传感器的五次坐站测试(5×STS)来客观地确定 PF 和三个关键的虚弱表型(缓慢、虚弱和疲惫)。

材料与方法

102 名老年人(年龄:76.54±7.72 岁,72%为女性)在佩戴连接躯干和双侧大腿及小腿的传感器的情况下进行 5×STS。使用秒表记录 5×STS 的持续时间。分析了 17 个传感器衍生变量,以确定 5×STS 区分 PF、缓慢、虚弱和疲惫的能力。使用二元逻辑回归,并计算其曲线下面积。

结果

传感器记录和手动记录的 5xSTS 持续时间之间存在很强的相关性(r=0.93,P<0.0001)。传感器衍生变量的指标,如缓慢(5×STS 持续时间、髋关节角速度范围和膝关节角速度范围)、虚弱(髋关节功率范围和膝关节功率范围)和疲惫(髋关节角速度范围的变异系数、垂直速度范围的变异系数和垂直功率范围的变异系数)在强壮组和虚弱/脆弱组之间存在差异(P<0.05),且具有中等至大的效应量(Cohen's d=0.50-1.09)。结果表明,传感器衍生变量可以通过曲线下面积 0.861、0.865、0.720 和 0.723 来识别 PF、缓慢、虚弱和疲惫。

结论

我们的研究表明,基于传感器的 5×STS 可以提供 PF、缓慢、虚弱和疲惫的数字生物标志物。5xSTS 的简单性、易于在摄像头前进行管理以及安全性可能通过远程医疗促进 PF、缓慢、虚弱和疲惫的远程评估。

相似文献

1
Toward Remote Assessment of Physical Frailty Using Sensor-based Sit-to-stand Test.
J Surg Res. 2021 Jul;263:130-139. doi: 10.1016/j.jss.2021.01.023. Epub 2021 Feb 27.
3
Instrumented Trail-Making Task: Application of Wearable Sensor to Determine Physical Frailty Phenotypes.
Gerontology. 2019;65(2):186-197. doi: 10.1159/000493263. Epub 2018 Oct 25.
6
Remote Physical Frailty Monitoring-The Application of Deep Learning-Based Image Processing in Tele-Health.
IEEE Access. 2020;8:219391-219399. doi: 10.1109/access.2020.3042451. Epub 2020 Dec 4.

引用本文的文献

1
A Full-Body IMU-Based Motion Dataset of Daily Tasks by Older and Younger Adults.
Sci Data. 2025 Mar 29;12(1):531. doi: 10.1038/s41597-025-04818-y.
4
Estimating balance, cognitive function, and falls risk using wearable sensors and the sit-to-stand test.
Wearable Technol. 2022 Jun 7;3:e9. doi: 10.1017/wtc.2022.6. eCollection 2022.
5
Relationship between Acceleration in a Sit-To-Stand Movement and Physical Function in Older Adults.
Geriatrics (Basel). 2023 Dec 16;8(6):123. doi: 10.3390/geriatrics8060123.
6
Cellular Senescence and Frailty in Transplantation.
Curr Transplant Rep. 2023 Jun;10(2):51-59. doi: 10.1007/s40472-023-00393-6. Epub 2023 Mar 21.

本文引用的文献

1
The 5-factor modified frailty index: an effective predictor of mortality in brain tumor patients.
J Neurosurg. 2020 Aug 14;135(1):78-86. doi: 10.3171/2020.5.JNS20766. Print 2021 Jul 1.
3
A Practical Guide to Assess the Reproducibility of Echocardiographic Measurements.
J Am Soc Echocardiogr. 2019 Dec;32(12):1505-1515. doi: 10.1016/j.echo.2019.08.015. Epub 2019 Oct 22.
4
Sensor-Based Upper-Extremity Frailty Assessment for the Vascular Surgery Risk Stratification.
J Surg Res. 2020 Feb;246:403-410. doi: 10.1016/j.jss.2019.09.029. Epub 2019 Oct 17.
5
Instruments for the detection of frailty syndrome in older adults: A systematic review.
PLoS One. 2019 Apr 29;14(4):e0216166. doi: 10.1371/journal.pone.0216166. eCollection 2019.
7
Use of the electronic Frailty Index to identify vulnerable patients: a pilot study in primary care.
Br J Gen Pract. 2017 Nov;67(664):e751-e756. doi: 10.3399/bjgp17X693089. Epub 2017 Sep 25.
8
How clinical practitioners assess frailty in their daily practice: an international survey.
Aging Clin Exp Res. 2017 Oct;29(5):905-912. doi: 10.1007/s40520-017-0806-8. Epub 2017 Aug 2.
9
Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices.
Healthc Inform Res. 2017 Jan;23(1):4-15. doi: 10.4258/hir.2017.23.1.4. Epub 2017 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验