Suppr超能文献

一个基于惯性测量单元的老年人和年轻人日常任务全身运动数据集。

A Full-Body IMU-Based Motion Dataset of Daily Tasks by Older and Younger Adults.

作者信息

Pogrzeba Loreen, Muschter Evelyn, Hanisch Simon, Wardhani Veronica Y P, Strufe Thorsten, Fitzek Frank H P, Li Shu-Chen

机构信息

Technische Universität Dresden, Centre for Tactile Internet with Human-in-the-Loop, 01062, Dresden, Germany.

Technische Universität Dresden, Research Hub 6G-life, 01062, Dresden, Germany.

出版信息

Sci Data. 2025 Mar 29;12(1):531. doi: 10.1038/s41597-025-04818-y.

Abstract

This dataset (named CeTI-Age-Kinematics) fills the gap in existing motion capture (MoCap) data by recording kinematics of full-body movements during daily tasks in an age-comparative sample with 32 participants in two groups: older adults (66-75 years) and younger adults (19-28 years). The data were recorded using sensor suits and gloves with inertial measurement units (IMUs). The dataset features 30 common elemental daily tasks that are grouped into nine categories, including simulated interactions with imaginary objects. Kinematic data were recorded under well-controlled conditions, with repetitions and well-documented task procedures and variations. It also entails anthropometric body measurements and spatial measurements of the experimental setups to enhance the interpretation of IMU MoCap data in relation to body characteristics and situational surroundings. This dataset can contribute to advancing machine learning, virtual reality, and medical applications by enabling detailed analyses and modeling of naturalistic motions and their variability across a wide age range. Such technologies are essential for developing adaptive systems for applications in tele-diagnostics, rehabilitation, and robotic motion planning that aim to serve broad populations.

摘要

这个数据集(名为CeTI-Age-Kinematics)通过在一个年龄对比样本中记录日常任务期间全身运动的运动学数据,填补了现有动作捕捉(MoCap)数据的空白。该样本有32名参与者,分为两组:老年人(66 - 75岁)和年轻人(19 - 28岁)。数据是使用带有惯性测量单元(IMU)的传感器套装和手套记录的。该数据集具有30项常见的基本日常任务,这些任务被分为九类,包括与虚拟物体的模拟交互。运动学数据是在严格控制的条件下记录的,有重复以及记录详细的任务程序和变化情况。它还包括人体测量以及实验装置的空间测量,以增强对与身体特征和情境环境相关的IMU MoCap数据的解读。这个数据集可以通过对自然运动及其在广泛年龄范围内的变异性进行详细分析和建模,为推进机器学习、虚拟现实和医学应用做出贡献。此类技术对于开发用于远程诊断、康复和机器人运动规划等应用的自适应系统至关重要,这些应用旨在服务广大人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed16/11954993/feb933cf9048/41597_2025_4818_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验