Department of Civil and Environmental Engineering, Stanford University, Jerry Yang and Akiko Yamazaki Energy and Environment Building, 473 Via Ortega, Stanford, CA, 94305, USA; National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA.
Department of Civil and Environmental Engineering, Stanford University, Jerry Yang and Akiko Yamazaki Energy and Environment Building, 473 Via Ortega, Stanford, CA, 94305, USA; Institute of Biogeochemistry and Pollutant Dynamics (IBP), Swiss Federal Institute of Technology, ETH Zürich, 8092, Zürich, Switzerland.
Water Res. 2017 Oct 1;122:633-644. doi: 10.1016/j.watres.2017.06.028. Epub 2017 Jun 12.
Coastal utilities exploiting mildly saline groundwater (<150 mg/L chloride) may be challenged by disinfection byproduct (DBP) formation, a concern likely to increase with sea-level rise. Groundwater from North Carolina coastal aquifers is characterized by large variations in concentrations of halides (bromide up to 10,600 μg/L) and dissolved organic carbon (up to 5.7 mg-C/L). Formation of 33 regulated and unregulated halogenated DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles, haloacetamides, and haloacetaldehydes, was measured after simulated chlorination of 24 coastal North Carolina groundwater samples under typical chlorination conditions. Results of chlorination simulation show that THM levels exceeded the Primary Maximum Contaminant Levels in half of the chlorinated samples. Addition of halides to a low salinity groundwater (110 mg/L chloride) indicated that elevated bromide triggered DBP formation, but chloride was not a critical factor for their formation. DBP speciation, but not overall molar formation, was strongly correlated with bromide variations in the groundwater. THMs and HAAs dominated the measured halogenated DBPs on a mass concentration basis. When measured concentrations were weighted by metrics of toxic potency, haloacetonitriles, and to a lesser degree, haloacetaldehydes and HAAs, were the predominant contributors to calculated DBP-associated toxicity. For some samples exhibiting elevated ammonia concentrations, the addition of chlorine to form chloramines in situ significantly reduced halogenated DBP concentrations and calculated toxicity. HAAs dominated the calculated toxicity of chloraminated waters. Reverse osmosis treatment of saline groundwater (chloride >250 mg/L) can reduce DBP formation by removing halides and organic precursors. However, we show that in a case where reverse osmosis permeate is blended with a separate raw groundwater, the residual bromide level in the permeate could still exceed that in the raw groundwater, and thereby induce DBP formation in the blend. DBP-associated calculated toxicity increased for certain blends in this system due to the DBPs resulting from the combination of the elevated bromide concentration in the permeate and the organic precursors from the raw coastal groundwater.
沿海公用事业利用矿化度较低的地下水(<150mg/L 氯化物)可能会受到消毒副产物(DBP)形成的挑战,随着海平面上升,这种担忧可能会加剧。北卡罗来纳州沿海含水层的地下水的特点是卤化物(溴高达 10600μg/L)和溶解有机碳(高达 5.7mg-C/L)浓度变化很大。在模拟氯化条件下,对 24 个北卡罗来纳州沿海地下水样本进行模拟氯化后,测量了 33 种受管制和不受管制的卤代 DBP 的形成情况,包括三卤甲烷(THMs)、卤乙酸(HAAs)、卤乙腈、卤乙酰胺和卤乙醛。氯化模拟结果表明,在一半被氯化的样本中,THM 水平超过了主要最大污染物水平。向低矿化度地下水(110mg/L 氯化物)中添加卤化物表明,溴化物的升高引发了 DBP 的形成,但氯化物不是其形成的关键因素。DBP 形态,而不是总摩尔形成,与地下水溴化物的变化密切相关。在质量浓度基础上,THMs 和 HAAs 主导了所测量的卤代 DBP。当以毒性效力指标衡量测量浓度时,卤乙腈以及在较小程度上的卤乙醛和 HAAs,是计算的 DBP 相关毒性的主要贡献者。对于一些表现出氨浓度升高的样本,现场形成氯胺以形成氯胺会显著降低卤代 DBP 浓度和计算出的毒性。HAAs 主导了氯胺化水的计算毒性。对咸地下水(氯化物>250mg/L)进行反渗透处理可以通过去除卤化物和有机前体来减少 DBP 的形成。然而,我们表明,在反渗透渗透物与单独的原始地下水混合的情况下,渗透物中的残留溴化物水平仍可能超过原始地下水,从而在混合中诱导 DBP 的形成。在该系统中,由于渗透物中溴化物浓度升高以及原始沿海地下水的有机前体导致的 DBP 组合,某些混合物的 DBP 相关计算毒性增加。