Suppr超能文献

基于多尺度特征融合的点云语义分割网络

Point Cloud Semantic Segmentation Network Based on Multi-Scale Feature Fusion.

作者信息

Du Jing, Jiang Zuning, Huang Shangfeng, Wang Zongyue, Su Jinhe, Su Songjian, Wu Yundong, Cai Guorong

机构信息

Computer Engineering College, Jimei University, Xiamen 361021, China.

Ropeok Technology Group Co., Ltd., Xiamen 361021, China.

出版信息

Sensors (Basel). 2021 Feb 26;21(5):1625. doi: 10.3390/s21051625.

Abstract

The semantic segmentation of small objects in point clouds is currently one of the most demanding tasks in photogrammetry and remote sensing applications. Multi-resolution feature extraction and fusion can significantly enhance the ability of object classification and segmentation, so it is widely used in the image field. For this motivation, we propose a point cloud semantic segmentation network based on multi-scale feature fusion (MSSCN) to aggregate the feature of a point cloud with different densities and improve the performance of semantic segmentation. In our method, random downsampling is first applied to obtain point clouds of different densities. A Spatial Aggregation Net (SAN) is then employed as the backbone network to extract local features from these point clouds, followed by concatenation of the extracted feature descriptors at different scales. Finally, a loss function is used to combine the different semantic information from point clouds of different densities for network optimization. Experiments were conducted on the S3DIS and ScanNet datasets, and our MSSCN achieved accuracies of 89.80% and 86.3%, respectively, on these datasets. Our method showed better performance than the recent methods PointNet, PointNet++, PointCNN, PointSIFT, and SAN.

摘要

点云中小物体的语义分割是目前摄影测量和遥感应用中要求最高的任务之一。多分辨率特征提取与融合能够显著提升目标分类和分割的能力,因此在图像领域得到了广泛应用。出于这一动机,我们提出了一种基于多尺度特征融合的点云语义分割网络(MSSCN),以聚合不同密度点云的特征并提高语义分割性能。在我们的方法中,首先应用随机下采样来获取不同密度的点云。然后使用空间聚合网络(SAN)作为骨干网络从这些点云中提取局部特征,接着将不同尺度下提取的特征描述符进行拼接。最后,使用损失函数结合来自不同密度点云的不同语义信息进行网络优化。在S3DIS和ScanNet数据集上进行了实验,我们的MSSCN在这些数据集上分别达到了89.80%和86.3%的准确率。我们的方法表现出比最近的方法PointNet、PointNet++、PointCNN、PointSIFT和SAN更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ce/7956681/232c8971e4b9/sensors-21-01625-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验