Duan Yijian, Wu Danfeng, Meng Liwen, Meng Yanmei, Zhu Jihong, Zhang Jinlai, Firkat Eksan, Liu Hui, Wei Hejun
College of Mechanical Engineering, Guangxi University, Naning, 530004, Guangxi, China.
College of Robotics, Beijing Union University, Beijing, 100027, Beijing, China.
Heliyon. 2024 Aug 28;10(17):e36814. doi: 10.1016/j.heliyon.2024.e36814. eCollection 2024 Sep 15.
Point-cloud semantic segmentation is a visual task essential for agricultural robots to comprehend natural agroforestry environments. However, owing to the extremely large amount of point-cloud data in agroforestry environments, learning effective features for semantic segmentation from large-scale point clouds is challenging. Therefore, to address this issue and achieve accurate semantic segmentation of different types of road-surface point clouds in large-scale agroforestry environments, this study proposes a point-cloud semantic segmentation network framework based on double-distance self-attention. First, a point-cloud local feature enhancement module is proposed. This module primarily extends the receptive field and enhances the generalizability of multidimensional features by incorporating reflection intensity information and a spatial feature-encoding block that is enhanced with contextual semantic information. Second, we introduce a dual-distance attention pooling (DDAPS) block based on the self-attention mechanism. This block initially learns the feature representation of the local neighborhood of each point through the self-attention mechanism. Then, it uses the DDAPS block to aggregate more discriminative local neighborhood point features. Finally, extensive experimental results on large-scale point-cloud datasets, SemanticKITTI and RELLIS-3D, demonstrate that our algorithm outperforms similar algorithms in large-scale agroforestry environments.
点云语义分割是农业机器人理解自然农林环境所必需的视觉任务。然而,由于农林环境中点云数据量极大,从大规模点云中学习有效的语义分割特征具有挑战性。因此,为解决这一问题并在大规模农林环境中实现对不同类型路面点云的准确语义分割,本研究提出了一种基于双距离自注意力的点云语义分割网络框架。首先,提出了一个点云局部特征增强模块。该模块主要通过合并反射强度信息和一个用上下文语义信息增强的空间特征编码块来扩展感受野并增强多维特征的通用性。其次,我们引入了基于自注意力机制的双距离注意力池化(DDAPS)块。该块首先通过自注意力机制学习每个点的局部邻域的特征表示。然后,它使用DDAPS块聚合更具判别力的局部邻域点特征。最后,在大规模点云数据集SemanticKITTI和RELLIS-3D上的大量实验结果表明,我们的算法在大规模农林环境中优于同类算法。