Polystyrene Nanoplastics Can Alter the Toxicological Effects of Simvastatin on .

作者信息

Barreto Angela, Santos Joana, Amorim Mónica J B, Maria Vera L

机构信息

Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.

出版信息

Toxics. 2021 Feb 26;9(3):44. doi: 10.3390/toxics9030044.

Abstract

Once in the environment, nanoplastics (NPls) may interact with other contaminants, such as pharmaceuticals, potentially acting as carriers and modulating their toxicity. Thus, the main aim of the current study is to investigate how polystyrene (PS) NPls (mean diameter: 60 nm) interact with simvastatin (SIM), an anticholesterolemic drug, and modulate its toxicity to zebrafish () embryos. PS NPls were carboxyl group functionalized, to promote the interaction/binding of NPls with SIM (worst-case scenarios) and it was fluorescently dyed, allowing to detect the intake. Exposure was 96 h to 0-150 mg/L NPls or 0-150 µg/L SIM, as well as to dual combinations (NPls 0.015 or 1.5 mg/L and SIM 12.5 or 15 µg/L). PS NPls alone did not exert effects whereas SIM (≥ 12.5 µg/L) significantly delayed the hatching, decreased the heartbeat, induced edemas and mortality. The combination of NPls (1.5 mg/L) and SIM (12.5 or 15 µg/L) had significant effects on the survival of the organisms while the correspondent NPls and SIM single exposures did not have significant effects on this endpoint. Concerning the malformations appearance, SIM alone had similar effects than when in co-exposures (0.015 mg/L NPls plus 12.5 or 15 µg/L SIM). Hatching and heartbeat increased after the co-exposures SIM and NPls comparing with SIM single exposures, showing that 0.015 mg/L NPls plus 12.5 or 15 µg/L SIM did not cause significant effects on these endpoints. This study shows that NPls effects on bioavailability and toxicity of other contaminants cannot be ignored when assessing the environmental behavior and risks of NPls.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae8f/7996764/c09f1dbcfbe1/toxics-09-00044-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索