Suppr超能文献

大型民用结构健康监测:基于数据分区和经典多维标度的方法。

Health Monitoring of Large-Scale Civil Structures: An Approach Based on Data Partitioning and Classical Multidimensional Scaling.

机构信息

Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.

Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran.

出版信息

Sensors (Basel). 2021 Feb 26;21(5):1646. doi: 10.3390/s21051646.

Abstract

A major challenge in structural health monitoring (SHM) is the efficient handling of big data, namely of high-dimensional datasets, when damage detection under environmental variability is being assessed. To address this issue, a novel data-driven approach to early damage detection is proposed here. The approach is based on an efficient partitioning of the dataset, gathering the sensor recordings, and on classical multidimensional scaling (CMDS). The partitioning procedure aims at moving towards a low-dimensional feature space; the CMDS algorithm is instead exploited to set the coordinates in the mentioned low-dimensional space, and define damage indices through norms of the said coordinates. The proposed approach is shown to efficiently and robustly address the challenges linked to high-dimensional datasets and environmental variability. Results related to two large-scale test cases are reported: the ASCE structure, and the Z24 bridge. A high sensitivity to damage and a limited (if any) number of false alarms and false detections are reported, testifying the efficacy of the proposed data-driven approach.

摘要

在结构健康监测 (SHM) 中,一个主要的挑战是高效处理大数据,即高维数据集,特别是在评估环境变化下的损伤检测时。为了解决这个问题,本文提出了一种新的数据驱动方法来进行早期损伤检测。该方法基于数据集的有效划分,收集传感器记录,并基于经典多维尺度 (CMDS)。分区过程旨在向低维特征空间移动;CMDS 算法则用于在所述低维空间中设置坐标,并通过所述坐标的范数定义损伤指标。所提出的方法被证明能够有效地、稳健地应对与高维数据集和环境变化相关的挑战。报告了与两个大规模测试案例相关的结果:ASCE 结构和 Z24 桥。结果表明,该方法对损伤具有高度敏感性,并且只有有限数量(如果有的话)的误报和漏报,证明了所提出的数据驱动方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8608/7956361/6b7a85841c0a/sensors-21-01646-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验