Suppr超能文献

延迟诱导的典范葡萄糖-胰岛素模型不确定性。

Delay-induced uncertainty for a paradigmatic glucose-insulin model.

机构信息

Department of Mathematics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA.

Department of Biomedical Informatics, Columbia University, New York, New York 10032, USA.

出版信息

Chaos. 2021 Feb;31(2):023142. doi: 10.1063/5.0027682.

Abstract

Medical practice in the intensive care unit is based on the assumption that physiological systems such as the human glucose-insulin system are predictable. We demonstrate that delay within the glucose-insulin system can induce sustained temporal chaos, rendering the system unpredictable. Specifically, we exhibit such chaos for the ultradian glucose-insulin model. This well-validated, finite-dimensional model represents feedback delay as a three-stage filter. Using the theory of rank one maps from smooth dynamical systems, we precisely explain the nature of the resulting delay-induced uncertainty (DIU). We develop a framework one may use to diagnose DIU in a general oscillatory dynamical system. For infinite-dimensional delay systems, no analog of the theory of rank one maps exists. Nevertheless, we show that the geometric principles encoded in our DIU framework apply to such systems by exhibiting sustained temporal chaos for a linear shear flow. Our results are potentially broadly applicable because delay is ubiquitous throughout mathematical physiology.

摘要

重症监护病房的医疗实践基于这样一种假设,即人体葡萄糖-胰岛素系统等生理系统是可预测的。我们证明,葡萄糖-胰岛素系统中的延迟会导致持续的时间混沌,从而使系统变得不可预测。具体来说,我们展示了超短周期葡萄糖-胰岛素模型中的这种混沌。这个经过良好验证的有限维模型将反馈延迟表示为三阶滤波器。我们使用来自光滑动力系统的一阶映射理论,精确地解释了由此产生的延迟诱导不确定性(DIU)的性质。我们提出了一个框架,人们可以用它来诊断一般振荡动力系统中的 DIU。对于无限维延迟系统,不存在一阶映射理论的类似物。然而,我们通过展示线性剪切流中的持续时间混沌,表明我们的 DIU 框架中编码的几何原理适用于此类系统。我们的结果具有广泛的潜在适用性,因为延迟在整个数学生理学中无处不在。

相似文献

1
Delay-induced uncertainty for a paradigmatic glucose-insulin model.
Chaos. 2021 Feb;31(2):023142. doi: 10.1063/5.0027682.
2
Delay-induced uncertainty in the glucose-insulin system: Pathogenicity for obesity and type-2 diabetes mellitus.
Front Physiol. 2022 Sep 1;13:936101. doi: 10.3389/fphys.2022.936101. eCollection 2022.
3
Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays.
J Theor Biol. 2006 Oct 7;242(3):722-35. doi: 10.1016/j.jtbi.2006.04.002. Epub 2006 May 18.
4
Computer model for mechanisms underlying ultradian oscillations of insulin and glucose.
Am J Physiol. 1991 May;260(5 Pt 1):E801-9. doi: 10.1152/ajpendo.1991.260.5.E801.
5
Predicting chaos for infinite dimensional dynamical systems: the Kuramoto-Sivashinsky equation, a case study.
Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11129-32. doi: 10.1073/pnas.88.24.11129.
6
Mathematical investigation of diabetically impaired ultradian oscillations in the glucose-insulin regulation.
J Theor Biol. 2017 Apr 7;418:66-76. doi: 10.1016/j.jtbi.2017.01.039. Epub 2017 Jan 24.
8
From dynamical systems with time-varying delay to circle maps and Koopman operators.
Phys Rev E. 2017 Jun;95(6-1):062214. doi: 10.1103/PhysRevE.95.062214. Epub 2017 Jun 16.
9
Chaos and physiology: deterministic chaos in excitable cell assemblies.
Physiol Rev. 1994 Jan;74(1):1-47. doi: 10.1152/physrev.1994.74.1.1.
10
Nonlinear dynamics of delay systems: an overview.
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180389. doi: 10.1098/rsta.2018.0389. Epub 2019 Jul 22.

引用本文的文献

1
Stochastic switching of delayed feedback suppresses oscillations in genetic regulatory systems.
J R Soc Interface. 2023 Jun;20(203):20230059. doi: 10.1098/rsif.2023.0059. Epub 2023 Jun 28.
2
The progression of secondary diabetes: A review of modeling studies.
Front Endocrinol (Lausanne). 2022 Dec 21;13:1070979. doi: 10.3389/fendo.2022.1070979. eCollection 2022.
3
Delay-induced uncertainty in the glucose-insulin system: Pathogenicity for obesity and type-2 diabetes mellitus.
Front Physiol. 2022 Sep 1;13:936101. doi: 10.3389/fphys.2022.936101. eCollection 2022.
4
Time-Delay Identification Using Multiscale Ordinal Quantifiers.
Entropy (Basel). 2021 Jul 27;23(8):969. doi: 10.3390/e23080969.

本文引用的文献

2
Reduced model for female endocrine dynamics: Validation and functional variations.
Math Biosci. 2023 Apr;358:108979. doi: 10.1016/j.mbs.2023.108979. Epub 2023 Feb 13.
3
Risk and reward: extending stochastic glycaemic control intervals to reduce workload.
Biomed Eng Online. 2020 Apr 29;19(1):26. doi: 10.1186/s12938-020-00771-6.
4
High-performance medicine: the convergence of human and artificial intelligence.
Nat Med. 2019 Jan;25(1):44-56. doi: 10.1038/s41591-018-0300-7. Epub 2019 Jan 7.
6
Enhancing noise-induced switching times in systems with distributed delays.
Chaos. 2018 Jun;28(6):063106. doi: 10.1063/1.5034106.
8
Personalized glucose forecasting for type 2 diabetes using data assimilation.
PLoS Comput Biol. 2017 Apr 27;13(4):e1005232. doi: 10.1371/journal.pcbi.1005232. eCollection 2017 Apr.
9
A frequency-dependent decoding mechanism for axonal length sensing.
Front Cell Neurosci. 2015 Jul 21;9:281. doi: 10.3389/fncel.2015.00281. eCollection 2015.
10
Delayed feedback model of axonal length sensing.
Biophys J. 2015 May 5;108(9):2408-19. doi: 10.1016/j.bpj.2015.03.055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验