Suppr超能文献

nNOS 调节小鼠气管中的纤毛细胞极性、纤毛摆动频率和定向流动。

nNOS regulates ciliated cell polarity, ciliary beat frequency, and directional flow in mouse trachea.

机构信息

Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.

Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.

出版信息

Life Sci Alliance. 2021 Mar 2;4(5). doi: 10.26508/lsa.202000981. Print 2021 May.

Abstract

Clearance of the airway is dependent on directional mucus flow across the mucociliary epithelium, and deficient flow is implicated in a range of human disorders. Efficient flow relies on proper polarization of the multiciliated cells and sufficient ciliary beat frequency. We show that NO, produced by nNOS in the multiciliated cells of the mouse trachea, controls both the planar polarity and the ciliary beat frequency and is thereby necessary for the generation of the robust flow. The effect of nNOS on the polarity of ciliated cells relies on its interactions with the apical networks of actin and microtubules and involves RhoA activation. The action of nNOS on the beat frequency is mediated by guanylate cyclase; both NO donors and cGMP can augment fluid flow in the trachea and rescue the deficient flow in nNOS mutants. Our results link insufficient availability of NO in ciliated cells to defects in flow and ciliary activity and may thereby explain the low levels of exhaled NO in ciliopathies.

摘要

气道的清除依赖于跨黏液纤毛上皮的定向黏液流动,而流动不足与多种人类疾病有关。有效的流动依赖于多纤毛细胞的适当极化和足够的纤毛拍打频率。我们表明,NO 由小鼠气管中的多纤毛细胞中的 nNOS 产生,它控制着平面极性和纤毛拍打频率,因此对于产生强大的流动是必要的。nNOS 对纤毛细胞极性的影响依赖于它与肌动蛋白和微管的顶端网络的相互作用,并涉及 RhoA 激活。nNOS 对拍打频率的作用是通过鸟苷酸环化酶介导的;NO 供体和 cGMP 都可以增加气管中的流体流动,并挽救 nNOS 突变体中流动不足的问题。我们的结果将纤毛细胞中 NO 的不足与流动和纤毛活动的缺陷联系起来,这可能解释了纤毛病中呼出的 NO 水平较低的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b429/8008965/9bdca3c03e1c/LSA-2020-00981_Fig1.jpg

相似文献

1
nNOS regulates ciliated cell polarity, ciliary beat frequency, and directional flow in mouse trachea.
Life Sci Alliance. 2021 Mar 2;4(5). doi: 10.26508/lsa.202000981. Print 2021 May.
2
The establishment of rotational polarity in the airway and ependymal cilia: analysis with a novel cilium motility mutant mouse.
Am J Physiol Lung Cell Mol Physiol. 2013 Jun 1;304(11):L736-45. doi: 10.1152/ajplung.00425.2012. Epub 2013 Mar 22.
3
Observing planar cell polarity in multiciliated mouse airway epithelial cells.
Methods Cell Biol. 2015;127:37-54. doi: 10.1016/bs.mcb.2015.01.016. Epub 2015 Mar 7.
4
Alcohol stimulates ciliary motility of isolated airway axonemes through a nitric oxide, cyclase, and cyclic nucleotide-dependent kinase mechanism.
Alcohol Clin Exp Res. 2009 Apr;33(4):610-6. doi: 10.1111/j.1530-0277.2008.00875.x. Epub 2009 Jan 12.
5
Mechanisms of cilia-driven transport in the airways in the absence of mucus.
Am J Respir Cell Mol Biol. 2014 Jul;51(1):56-67. doi: 10.1165/rcmb.2012-0530OC.
8
Analysis of motility and mucociliary function of tracheal epithelial cilia.
Methods Cell Biol. 2023;176:159-180. doi: 10.1016/bs.mcb.2022.12.015. Epub 2023 Feb 8.
9
Influenza A virus enhances ciliary activity and mucociliary clearance via TLR3 in airway epithelium.
Respir Res. 2020 Oct 27;21(1):282. doi: 10.1186/s12931-020-01555-1.
10
Initiation and maturation of cilia-generated flow in newborn and postnatal mouse airway.
Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L1067-75. doi: 10.1152/ajplung.00001.2009. Epub 2009 Apr 3.

引用本文的文献

1
Structure and function relationships of mucociliary clearance in human and rat airways.
Nat Commun. 2025 Mar 12;16(1):2446. doi: 10.1038/s41467-025-57667-z.
3
Genomic attributes of airway commensal bacteria and mucosa.
Commun Biol. 2024 Feb 12;7(1):171. doi: 10.1038/s42003-024-05840-3.
4
Structure and Function Relationships of Mucociliary Clearance in Human and Rat Airways.
bioRxiv. 2025 Feb 20:2023.12.24.572054. doi: 10.1101/2023.12.24.572054.

本文引用的文献

1
Muco-Obstructive Lung Diseases.
N Engl J Med. 2019 May 16;380(20):1941-1953. doi: 10.1056/NEJMra1813799.
2
Opportunities and Challenges for Molecular Understanding of Ciliopathies-The 100,000 Genomes Project.
Front Genet. 2019 Mar 11;10:127. doi: 10.3389/fgene.2019.00127. eCollection 2019.
3
aPKC: the Kinase that Phosphorylates Cell Polarity.
F1000Res. 2018 Jun 25;7. doi: 10.12688/f1000research.14427.1. eCollection 2018.
4
Intubation-free in vivo imaging of the tracheal mucosa using two-photon microscopy.
Sci Rep. 2017 Apr 6;7(1):694. doi: 10.1038/s41598-017-00769-6.
5
Transition Zone Migration: A Mechanism for Cytoplasmic Ciliogenesis and Postaxonemal Centriole Elongation.
Cold Spring Harb Perspect Biol. 2017 Aug 1;9(8):a028142. doi: 10.1101/cshperspect.a028142.
7
cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors.
Handb Exp Pharmacol. 2017;238:105-122. doi: 10.1007/164_2015_36.
8
Cilia and Mucociliary Clearance.
Cold Spring Harb Perspect Biol. 2017 Apr 3;9(4):a028241. doi: 10.1101/cshperspect.a028241.
9
Neuronal nitric oxide synthase in hypertension - an update.
Clin Hypertens. 2016 Nov 3;22:20. doi: 10.1186/s40885-016-0055-8. eCollection 2016.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验