Suppr超能文献

RhoA在多纤毛上皮细胞顶端表面出现过程中调节肌动蛋白网络动态。

RhoA regulates actin network dynamics during apical surface emergence in multiciliated epithelial cells.

作者信息

Sedzinski Jakub, Hannezo Edouard, Tu Fan, Biro Maté, Wallingford John B

机构信息

Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.

Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK.

出版信息

J Cell Sci. 2017 Jan 15;130(2):420-428. doi: 10.1242/jcs.194704.

Abstract

Homeostatic replacement of epithelial cells from basal precursors is a multistep process involving progenitor cell specification, radial intercalation and, finally, apical surface emergence. Recent data demonstrate that actin-based pushing under the control of the formin protein Fmn1 drives apical emergence in nascent multiciliated epithelial cells (MCCs), but little else is known about this actin network or the control of Fmn1. Here, we explore the role of the small GTPase RhoA in MCC apical emergence. Disruption of RhoA function reduced the rate of apical surface expansion and decreased the final size of the apical domain. Analysis of cell shapes suggests that RhoA alters the balance of forces exerted on the MCC apical surface. Finally, quantitative time-lapse imaging and fluorescence recovery after photobleaching studies argue that RhoA works in concert with Fmn1 to control assembly of the specialized apical actin network in MCCs. These data provide new molecular insights into epithelial apical surface assembly and could also shed light on mechanisms of apical lumen formation.

摘要

从基底前体细胞进行上皮细胞的稳态替代是一个多步骤过程,涉及祖细胞特化、径向插入,最终是顶端表面出现。最近的数据表明,在formin蛋白Fmn1的控制下,基于肌动蛋白的推动驱动新生多纤毛上皮细胞(MCC)的顶端出现,但对于这个肌动蛋白网络或Fmn1的控制了解甚少。在这里,我们探讨小GTPase RhoA在MCC顶端出现中的作用。RhoA功能的破坏降低了顶端表面扩张的速率,并减小了顶端结构域的最终大小。细胞形状分析表明,RhoA改变了施加在MCC顶端表面的力的平衡。最后,定量延时成像和光漂白后的荧光恢复研究表明,RhoA与Fmn1协同作用,控制MCC中特化顶端肌动蛋白网络的组装。这些数据为上皮顶端表面组装提供了新的分子见解,也可能揭示顶端管腔形成的机制。

相似文献

2
RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1.
J Cell Sci. 2007 Jun 1;120(Pt 11):1868-76. doi: 10.1242/jcs.005306. Epub 2007 May 8.
3
Formin-binding proteins: modulators of formin-dependent actin polymerization.
Biochim Biophys Acta. 2010 Feb;1803(2):174-82. doi: 10.1016/j.bbamcr.2009.06.002. Epub 2009 Jul 7.
4
Initiation of DNA replication requires actin dynamics and formin activity.
EMBO J. 2017 Nov 2;36(21):3212-3231. doi: 10.15252/embj.201796585. Epub 2017 Oct 5.
7
MicroRNAs as key regulators of GTPase-mediated apical actin reorganization in multiciliated epithelia.
Small GTPases. 2016 Apr 2;7(2):54-8. doi: 10.1080/21541248.2016.1151099. Epub 2016 May 4.
8
Crb3 is required to organize the apical domain of multiciliated cells.
J Cell Sci. 2024 Mar 1;137(5). doi: 10.1242/jcs.261046. Epub 2023 Nov 24.
9
The scaffold-protein IQGAP1 enhances and spatially restricts the actin-nucleating activity of Diaphanous-related formin 1 (DIAPH1).
J Biol Chem. 2020 Mar 6;295(10):3134-3147. doi: 10.1074/jbc.RA119.010476. Epub 2020 Jan 31.

引用本文的文献

2
Spontaneous Calcium Bursts Organize the Apical Actin Cytoskeleton of Multiciliated Cells.
Int J Mol Sci. 2025 Mar 11;26(6):2507. doi: 10.3390/ijms26062507.
4
Convergence of autism proteins at the cilium.
bioRxiv. 2025 Jan 14:2024.12.05.626924. doi: 10.1101/2024.12.05.626924.
5
Actin Depolymerizing Factor Destrin Regulates Cilia Development and Function during Vertebrate Embryogenesis.
Dev Reprod. 2024 Sep;28(3):109-119. doi: 10.12717/DR.2024.28.3.109. Epub 2024 Sep 30.
7
JNK regulates ciliogenesis through the interflagellar transport complex and actin networks.
J Cell Biol. 2023 Nov 6;222(11). doi: 10.1083/jcb.202303052. Epub 2023 Oct 18.
8
Multicellular rosettes link mesenchymal-epithelial transition to radial intercalation in the mouse axial mesoderm.
Dev Cell. 2023 Jun 5;58(11):933-950.e5. doi: 10.1016/j.devcel.2023.03.018. Epub 2023 Apr 19.
9
Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium.
Nat Cell Biol. 2023 May;25(5):658-671. doi: 10.1038/s41556-023-01116-w. Epub 2023 Mar 30.
10
Dysregulated Smooth Muscle Cell BMPR2-ARRB2 Axis Causes Pulmonary Hypertension.
Circ Res. 2023 Mar 3;132(5):545-564. doi: 10.1161/CIRCRESAHA.121.320541. Epub 2023 Feb 6.

本文引用的文献

2
Maintenance of the Epithelial Barrier and Remodeling of Cell-Cell Junctions during Cytokinesis.
Curr Biol. 2016 Jul 25;26(14):1829-42. doi: 10.1016/j.cub.2016.05.036. Epub 2016 Jun 23.
3
Actin kinetics shapes cortical network structure and mechanics.
Sci Adv. 2016 Apr 22;2(4):e1501337. doi: 10.1126/sciadv.1501337. eCollection 2016 Apr.
4
Emergence of an Apical Epithelial Cell Surface In Vivo.
Dev Cell. 2016 Jan 11;36(1):24-35. doi: 10.1016/j.devcel.2015.12.013.
5
Formins at the Junction.
Trends Biochem Sci. 2016 Feb;41(2):148-159. doi: 10.1016/j.tibs.2015.12.002. Epub 2015 Dec 28.
7
Lumen Formation Is an Intrinsic Property of Isolated Human Pluripotent Stem Cells.
Stem Cell Reports. 2015 Dec 8;5(6):954-962. doi: 10.1016/j.stemcr.2015.10.015. Epub 2015 Nov 25.
8
Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.
Nat Cell Biol. 2015 Nov;17(11):1435-45. doi: 10.1038/ncb3246. Epub 2015 Sep 28.
9
Zeta-Tubulin Is a Member of a Conserved Tubulin Module and Is a Component of the Centriolar Basal Foot in Multiciliated Cells.
Curr Biol. 2015 Aug 17;25(16):2177-83. doi: 10.1016/j.cub.2015.06.063. Epub 2015 Jul 30.
10
A dynamic formin-dependent deep F-actin network in axons.
J Cell Biol. 2015 Aug 3;210(3):401-17. doi: 10.1083/jcb.201506110. Epub 2015 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验