Suppr超能文献

用于通过多模态成像识别群体结构的深度多视图学习

Deep Multiview Learning to Identify Population Structure with Multimodal Imaging.

作者信息

Feng Yixue, Liu Kefei, Kim Mansu, Long Qi, Yao Xiaohui, Shen Li

机构信息

School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, USA.

Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.

出版信息

Proc IEEE Int Symp Bioinformatics Bioeng. 2020 Oct;2020:308-314. doi: 10.1109/bibe50027.2020.00057. Epub 2020 Dec 16.

Abstract

We present an effective deep multiview learning framework to identify population structure using multimodal imaging data. Our approach is based on canonical correlation analysis (CCA). We propose to use deep generalized CCA (DGCCA) to learn a shared latent representation of non-linearly mapped and maximally correlated components from multiple imaging modalities with reduced dimensionality. In our empirical study, this representation is shown to effectively capture more variance in original data than conventional generalized CCA (GCCA) which applies only linear transformation to the multi-view data. Furthermore, subsequent cluster analysis on the new feature set learned from DGCCA is able to identify a promising population structure in an Alzheimer's disease (AD) cohort. Genetic association analyses of the clustering results demonstrate that the shared representation learned from DGCCA yields a population structure with a stronger genetic basis than several competing feature learning methods.

摘要

我们提出了一种有效的深度多视图学习框架,用于使用多模态成像数据识别群体结构。我们的方法基于典型相关分析(CCA)。我们建议使用深度广义CCA(DGCCA)从多个成像模态中学习非线性映射且最大相关组件的共享潜在表示,并降低维度。在我们的实证研究中,与仅对多视图数据应用线性变换的传统广义CCA(GCCA)相比,这种表示能够有效地捕获原始数据中更多的方差。此外,对从DGCCA学习到的新特征集进行后续聚类分析,能够在阿尔茨海默病(AD)队列中识别出有前景的群体结构。聚类结果的遗传关联分析表明,从DGCCA学习到的共享表示产生的群体结构比几种竞争的特征学习方法具有更强的遗传基础。

相似文献

1
Deep Multiview Learning to Identify Population Structure with Multimodal Imaging.用于通过多模态成像识别群体结构的深度多视图学习
Proc IEEE Int Symp Bioinformatics Bioeng. 2020 Oct;2020:308-314. doi: 10.1109/bibe50027.2020.00057. Epub 2020 Dec 16.
3
Multiview Clustering via Proximity Learning in Latent Representation Space.基于潜在表示空间中邻近学习的多视图聚类。
IEEE Trans Neural Netw Learn Syst. 2023 Feb;34(2):973-986. doi: 10.1109/TNNLS.2021.3104846. Epub 2023 Feb 3.
4
Multiview Clustering by Joint Latent Representation and Similarity Learning.基于联合潜在表示和相似性学习的多视图聚类
IEEE Trans Cybern. 2020 Nov;50(11):4848-4854. doi: 10.1109/TCYB.2019.2922042. Epub 2019 Jun 26.
5
Multiview Latent Space Learning With Feature Redundancy Minimization.多视图潜在空间学习与特征冗余最小化。
IEEE Trans Cybern. 2020 Apr;50(4):1655-1668. doi: 10.1109/TCYB.2018.2883673. Epub 2018 Dec 14.
9
Multiview Uncorrelated Discriminant Analysis.多视图无相关判别分析。
IEEE Trans Cybern. 2016 Dec;46(12):3272-3284. doi: 10.1109/TCYB.2015.2502248. Epub 2015 Dec 3.
10
Multiview Spectral Clustering via Structured Low-Rank Matrix Factorization.基于结构化低秩矩阵分解的多视角谱聚类
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4833-4843. doi: 10.1109/TNNLS.2017.2777489. Epub 2018 Jan 4.

本文引用的文献

9
Semi-supervised cluster analysis of imaging data.基于影像数据的半监督聚类分析。
Neuroimage. 2011 Feb 1;54(3):2185-97. doi: 10.1016/j.neuroimage.2010.09.074. Epub 2010 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验