Suppr超能文献

等电聚焦法测定小鼠视网膜中视紫红质的磷酸化水平

Isoelectric Focusing to Quantify Rhodopsin Phosphorylation in Mouse Retina.

作者信息

Lokappa Sowmya Bekshe, Cornwall M Carter, Chen Jeannie

机构信息

Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA.

Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA.

出版信息

Bio Protoc. 2019 Jul 20;9(14):e3300. doi: 10.21769/BioProtoc.3300.

Abstract

Rhodopsin is a G-protein coupled receptor (GPCR) that mediates vision under dim light. Upon light exposure, rhodopsin is phosphorylated at multiple serine and threonine sites at its carboxyl-terminus by rhodopsin kinase (GRK1). This, in turn, reduces its ability to activate the visual G-protein transducin. Binding of light-activated, phosphorylated rhodopsin by arrestin (ARR1) fully terminates the catalytic activity of rhodopsin. Quantification of the levels of the differentially phosphorylated rhodopsin species provides definitive information about the role of phosphorylated rhodopsin in visual functions. Isoelectric Focusing (IEF) is a technique which is used to separate ampholytic components, such as proteins, based on their isoelectric point (pI). It is a useful technique used to distinguish protein isoforms and post-translational modifications such as phosphorylation, glycosylation, deamination, and acetylation, due to their effects on the protein's pI. Isoelectric Focusing can provide high resolution of differentially phosphorylated forms of a protein. Though other techniques such as kinase activity assays, phospho-specific antibodies, western blot, enzyme-linked immunosorbent assays (ELISA), radiolabeling and mass spectrometry are used to detect and quantify protein phosphorylation, IEF is a simple and cost-effective method to quantify rhodopsin phosphorylation, as it can readily detect individual phosphorylated forms. Here we provide a detailed protocol for determining phosphorylated rhodopsin species using the Isoelectric Focusing technique.

摘要

视紫红质是一种G蛋白偶联受体(GPCR),在暗光条件下介导视觉。在光照下,视紫红质在其羧基末端的多个丝氨酸和苏氨酸位点被视紫红质激酶(GRK1)磷酸化。这反过来又降低了它激活视觉G蛋白转导蛋白的能力。视紫红质被抑制蛋白(ARR1)结合,完全终止视紫红质的催化活性。对视紫红质不同磷酸化形式水平的定量提供了关于磷酸化视紫红质在视觉功能中作用的确切信息。等电聚焦(IEF)是一种基于两性电解质成分(如蛋白质)的等电点(pI)来分离它们的技术。由于蛋白质异构体和翻译后修饰(如磷酸化、糖基化、脱氨基和乙酰化)会影响蛋白质的pI,因此它是一种用于区分这些修饰的有用技术。等电聚焦可以提供蛋白质不同磷酸化形式的高分辨率。虽然其他技术如激酶活性测定、磷酸化特异性抗体、蛋白质印迹、酶联免疫吸附测定(ELISA)、放射性标记和质谱法用于检测和定量蛋白质磷酸化,但等电聚焦是一种简单且经济高效的定量视紫红质磷酸化的方法,因为它可以很容易地检测到各个磷酸化形式。在这里,我们提供了一个使用等电聚焦技术测定磷酸化视紫红质形式的详细方案。

相似文献

1
Isoelectric Focusing to Quantify Rhodopsin Phosphorylation in Mouse Retina.
Bio Protoc. 2019 Jul 20;9(14):e3300. doi: 10.21769/BioProtoc.3300.
3
Arrestin Facilitates Rhodopsin Dephosphorylation .
J Neurosci. 2022 Apr 27;42(17):3537-3545. doi: 10.1523/JNEUROSCI.0141-22.2022. Epub 2022 Mar 24.
5
Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
J Neurosci. 2016 Jun 29;36(26):6973-87. doi: 10.1523/JNEUROSCI.3544-15.2016.
6
Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
Cell Signal. 2013 Nov;25(11):2155-62. doi: 10.1016/j.cellsig.2013.07.009. Epub 2013 Jul 17.
8
Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells.
J Biol Chem. 2005 Dec 16;280(50):41184-91. doi: 10.1074/jbc.M506935200. Epub 2005 Oct 11.
10
Isolation and identification of the phosphorylated species of rhodopsin.
Biochemistry. 1984 Apr 10;23(8):1737-41. doi: 10.1021/bi00303a024.

引用本文的文献

1
Light regulation of rhodopsin distribution during outer segment renewal in murine rod photoreceptors.
Curr Biol. 2024 Apr 8;34(7):1492-1505.e6. doi: 10.1016/j.cub.2024.02.070. Epub 2024 Mar 19.
2
Posttranslational modifications of proteins in diseased retina.
Front Cell Neurosci. 2023 Mar 30;17:1150220. doi: 10.3389/fncel.2023.1150220. eCollection 2023.
3
Arrestin Facilitates Rhodopsin Dephosphorylation .
J Neurosci. 2022 Apr 27;42(17):3537-3545. doi: 10.1523/JNEUROSCI.0141-22.2022. Epub 2022 Mar 24.
4
Dark noise and retinal degeneration from D190N-rhodopsin.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):23033-23043. doi: 10.1073/pnas.2010417117. Epub 2020 Sep 1.

本文引用的文献

1
Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
J Neurosci. 2016 Jun 29;36(26):6973-87. doi: 10.1523/JNEUROSCI.3544-15.2016.
2
Common errors in mass spectrometry-based analysis of post-translational modifications.
Proteomics. 2016 Mar;16(5):700-14. doi: 10.1002/pmic.201500355.
3
Photoreceptors at a glance.
J Cell Sci. 2015 Nov 15;128(22):4039-45. doi: 10.1242/jcs.175687.
5
Generation and purification of highly specific antibodies for detecting post-translationally modified proteins in vivo.
Nat Protoc. 2014 Feb;9(2):375-95. doi: 10.1038/nprot.2014.017. Epub 2014 Jan 23.
6
Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses.
Science. 2006 Jul 28;313(5786):530-3. doi: 10.1126/science.1126612.
7
Early receptor current of wild-type and transducin knockout mice: photosensitivity and light-induced Ca2+ release.
J Physiol. 2004 Jun 15;557(Pt 3):821-8. doi: 10.1113/jphysiol.2004.064014. Epub 2004 Apr 8.
8
Mass spectrometric analysis of the kinetics of in vivo rhodopsin phosphorylation.
Protein Sci. 2002 Apr;11(4):862-74. doi: 10.1110/ps.3870102.
10
Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites.
Neuron. 2000 Oct;28(1):153-64. doi: 10.1016/s0896-6273(00)00093-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验