Suppr超能文献

用于病原体检测应用的3D微结构阵列芯片上的固相PCR

Solid Phase PCR on 3D Microstructure ArrayChip for Pathogen Detection Application.

作者信息

Kant Krishna, Ngo Tien Anh

机构信息

Department of Micro and Nanotechnology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.

Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.

出版信息

Bio Protoc. 2019 Aug 5;9(15):e3323. doi: 10.21769/BioProtoc.3323.

Abstract

Advanced free angle photolithography (FAPL) is presented for making 3D supercritical angle fluorescence (SAF) microstructures and transfer them on to polymeric chips using injection molding technique for low-cost microfluidic devices embedded with optical sensing structures. A solid phase polymerase chain reaction (SP-PCR) is used as model technique, which allows rapid and sensitive detection of pathogen DNA on-chip. This article presents the detailed fabrication of SAF structure and SP-PCR application on SAF structure for pathogen detection. This protocol of developing SAF structures using the FAPL process, increases the number of SAF per mm. FAPL was performed via a motorized stage to control the angle of incidence and to achieve the desired bucket-shapes (dimensions of 50 μm to 150 μm with a slope) required for the 3D optical sensing. Due to the unique properties of SAF structures, it enhances the fluorescent signal by 46 times. Increasing the number of SAF structures and reducing the size resulted in reduction of sample volume required per test along with improvement in the limit of detection (LOD) due to a smaller size. This article also presents the experimental details of SP-PCR using DNA oligos bound to the SAF structures for on-chip pathogen detection and a comparison between different sizes of SAF structures. The direct on-chip SP-PCR paves the path for the application of this technique in point-of-care devices.

摘要

提出了先进的自由角光刻技术(FAPL),用于制造三维超临界角荧光(SAF)微结构,并使用注塑技术将其转移到聚合物芯片上,以制造嵌入光学传感结构的低成本微流控设备。固相聚合酶链反应(SP-PCR)被用作模型技术,它能够在芯片上快速灵敏地检测病原体DNA。本文介绍了SAF结构的详细制造过程以及SP-PCR在用于病原体检测的SAF结构上的应用。使用FAPL工艺开发SAF结构的这一方案增加了每毫米SAF的数量。FAPL通过一个电动平台进行,以控制入射角并实现三维光学传感所需的理想桶形(尺寸为50μm至150μm且带有斜率)。由于SAF结构的独特性质,它将荧光信号增强了46倍。增加SAF结构的数量并减小其尺寸,导致每次测试所需的样品体积减少,同时由于尺寸较小,检测限(LOD)也得到了改善。本文还介绍了使用与SAF结构结合的DNA寡核苷酸进行芯片上病原体检测的SP-PCR实验细节,以及不同尺寸SAF结构之间的比较。直接在芯片上进行的SP-PCR为该技术在即时检测设备中的应用铺平了道路。

相似文献

1
Solid Phase PCR on 3D Microstructure ArrayChip for Pathogen Detection Application.
Bio Protoc. 2019 Aug 5;9(15):e3323. doi: 10.21769/BioProtoc.3323.
8
Supercritical Angle Fluorescence Characterization Using Spatially Resolved Fourier Plane Spectroscopy.
Anal Chem. 2018 Apr 3;90(7):4263-4267. doi: 10.1021/acs.analchem.7b04822. Epub 2018 Mar 15.
9
Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application.
Opt Express. 2020 Aug 31;28(18):25716-25722. doi: 10.1364/OE.398848.
10
Simultaneous detection of multiple HPV DNA via bottom-well microfluidic chip within an infra-red PCR platform.
Biomicrofluidics. 2018 Mar 14;12(2):024109. doi: 10.1063/1.5023652. eCollection 2018 Mar.

本文引用的文献

2
Fast and Sensitive Interferon-γ Assay Using Supercritical Angle Fluorescence.
Biosensors (Basel). 2013 Feb 8;3(1):108-15. doi: 10.3390/bios3010108. eCollection 2013 Mar.
3
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
4
5
A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR.
Lab Chip. 2011 Apr 21;11(8):1457-63. doi: 10.1039/c0lc00528b. Epub 2011 Mar 2.
6
Supercritical angle fluorescence (SAF) microscopy.
Opt Express. 2004 Sep 6;12(18):4246-54. doi: 10.1364/opex.12.004246.
7
8
Quantitative detection of Streptococcus pneumoniae in nasopharyngeal secretions by real-time PCR.
J Clin Microbiol. 2001 Sep;39(9):3129-34. doi: 10.1128/JCM.39.9.3129-3134.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验