Putra Vina D L, Jalilian Iman, Campbell Madeline, Poole Kate, Whan Renee, Tomasetig Florence, Tate Melissa L Knothe
MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
Department of Cell Biology, Yale University, New Haven, USA.
Bio Protoc. 2019 Dec 5;9(23):e3439. doi: 10.21769/BioProtoc.3439.
Mechanomics, the mechanics equivalent of genomics, is a burgeoning field studying mechanical modulation of stem cell behavior and lineage commitment. Analogous to mechanical testing of a living material as it adapts and evolves, mapping of the mechanome necessitates the development of new protocols to assess changes in structure and function in live stem cells as they adapt and differentiate. Previous techniques have relied on imaging of cellular structures in fixed cells and/or live cell imaging of single cells with separate studies of changes in mechanical and biological properties. Here we present two complementary protocols to study mechanobiology and mechanoadaptation of live stem cells in adherent and motile contexts. First, we developed and tested live imaging protocols for simultaneous visualization and tracking of actin and tubulin mechanoadaptation as well as shape and volume of cells and their nuclei in adherent model embryonic murine mesenchymal stem cells (C3H/10T1/2) and in a neuroblastoma cell line. Then we applied the protocol to enable quantitative study of primary human mesenchymal stem cells in a motile state, , ingression in a three-dimensional, cell culture model. Together, these protocols enable study of emergent structural mechanoadaptation of the cell's own cytoskeletal machinery while tracking lineage commitment using phenotypic (quantitative morphology measures) and genotypic (, reverse transcription Polymerase Chain Reaction, rtPCR) methods. These tools are expected to facilitate the mapping of the mechanome and incipient mechanistic understanding of stem cell mechanobiology, from the cellular to the tissue and organ length scales.
力组学是基因组学在力学领域的对应学科,是一个新兴的研究领域,致力于研究干细胞行为和谱系定向的力学调控。类似于对一种活材料在其适应和进化过程中的力学测试,力组图谱绘制需要开发新的方案,以评估活干细胞在适应和分化过程中结构和功能的变化。以前的技术依赖于对固定细胞中细胞结构的成像和/或对单个细胞的活细胞成像,并分别研究力学和生物学特性的变化。在这里,我们提出了两个互补的方案,用于研究贴壁和运动状态下活干细胞的力学生物学和力学适应性。首先,我们开发并测试了活细胞成像方案,用于在贴壁的胚胎小鼠间充质干细胞模型(C3H/10T1/2)和成神经细胞瘤细胞系中同时可视化和跟踪肌动蛋白和微管蛋白的力学适应性以及细胞及其细胞核的形状和体积。然后,我们应用该方案对处于运动状态的原代人骨髓间充质干细胞在三维细胞培养模型中的侵入进行定量研究。总之,这些方案能够在使用表型(定量形态测量)和基因型(逆转录聚合酶链反应,rtPCR)方法跟踪谱系定向的同时,研究细胞自身细胞骨架机制的新兴结构力学适应性。这些工具有望促进力组图谱的绘制,并从细胞到组织和器官长度尺度对干细胞力学生物学进行初步的机制理解。