3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece.
Department of Electrical Engineering, Aragon Institute of Engineering Research, IIS Aragon, University of Zaragoza, Zaragoza, Spain.
Cancer Biother Radiopharm. 2021 Dec;36(10):809-819. doi: 10.1089/cbr.2020.4554. Epub 2021 Mar 2.
The purpose of this study was to develop a rapid, reliable, and efficient tool for three-dimensional (3D) dosimetry treatment planning and post-treatment evaluation of liver radioembolization with Y microspheres, using tissue-specific dose voxel kernels (DVKs) that can be used in everyday clinical practice. Two tissue-specific DVKs for Y were calculated through Monte Carlo (MC) simulations. DVKs for the liver and lungs were generated, and the dose distribution was compared with direct MC simulations. A method was developed to produce a 3D dose map by convolving the calculated DVKs with the activity biodistribution derived from clinical single-photon emission computed tomography (SPECT) or positron emission tomography (PET) images. Image registration for the SPECT or PET images with the corresponding computed tomography scans was performed before dosimetry calculation. The authors first compared the DVK convolution dosimetry with a direct full MC simulation on an XCAT anthropomorphic phantom. They then tested it in 25 individual clinical cases of patients who underwent Y therapy. All MC simulations were carried out using the GATE MC toolkit. Comparison of the measured absorbed dose using tissue-specific DVKs and direct MC simulation on 25 patients revealed a mean difference of 1.07% ± 1.43% for the liver and 1.03% ± 1.21% for the tumor tissue, respectively. The largest difference between DVK convolution and full MC dosimetry was observed for the lung tissue (10.16% ± 1.20%). The DVK statistical uncertainty was <0.75% for both media. This semiautomatic algorithm is capable of performing rapid, accurate, and efficient 3D dosimetry. The proposed method considers tissue and activity heterogeneity using tissue-specific DVKs. Furthermore, this method provides results in <1 min, making it suitable for everyday clinical practice.
本研究旨在开发一种快速、可靠且高效的工具,用于对 Y 微球肝动脉放射栓塞治疗的三维(3D)剂量学治疗计划和治疗后评估,使用可在日常临床实践中使用的组织特异性剂量体素核(DVK)。通过蒙特卡罗(MC)模拟计算了两种用于 Y 的组织特异性 DVK。生成了肝脏和肺部的 DVK,并将剂量分布与直接 MC 模拟进行了比较。开发了一种通过将计算出的 DVK 与源自临床单光子发射计算机断层扫描(SPECT)或正电子发射断层扫描(PET)图像的活性生物分布卷积来生成 3D 剂量图的方法。在剂量计算之前,对 SPECT 或 PET 图像与相应的计算机断层扫描图像进行了图像配准。作者首先在 XCAT 人体模型上比较了 DVK 卷积剂量学与直接全 MC 模拟。然后,他们在 25 名接受 Y 治疗的患者的个别临床病例中进行了测试。所有 MC 模拟均使用 GATE MC 工具包进行。在 25 名患者中,使用组织特异性 DVK 测量的吸收剂量与直接 MC 模拟的比较显示,肝脏的平均差异为 1.07%±1.43%,肿瘤组织的平均差异为 1.03%±1.21%。肺组织的 DVK 卷积和全 MC 剂量之间的最大差异为 10.16%±1.20%。两种介质的 DVK 统计不确定性均<0.75%。这种半自动算法能够快速、准确和高效地进行 3D 剂量学。所提出的方法使用组织特异性 DVK 考虑了组织和活性异质性。此外,该方法在<1 分钟内提供结果,使其适用于日常临床实践。