Department of Medical Physics, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Institut Jules Bordet, Brussels, Belgium.
Université Libre De Bruxelles (ULB), Radiophysics and MRI Physics Laboratory, Brussels, Belgium.
Med Phys. 2024 Jan;51(1):522-532. doi: 10.1002/mp.16729. Epub 2023 Sep 15.
Radiopharmaceutical therapy (RPT) is an increasingly adopted modality for treating cancer. There is evidence that the optimization of the treatment based on dosimetry can improve outcomes. However, standardization of the clinical dosimetry workflow still represents a major effort. Among the many sources of variability, the impact of using different Dose Voxel Kernels (DVKs) to generate absorbed dose (AD) maps by convolution with the time-integrated activity (TIA) distribution has not been systematically investigated.
This study aims to compare DVKs and assess the differences in the ADs when convolving the same TIA map with different DVKs.
DVKs of 3 × 3 × 3 mm sampling-nine for Lu, nine for Y-were selected from those most used in commercial/free software or presented in prior publications. For each voxel within a 11 × 11 × 11 matrix, the coefficient of variation (CoV) and the percentage difference between maximum and minimum values (% maximum difference) were calculated. The total absorbed dose per decay (SUM), calculated as the sum of all the voxel values in each kernel, was also compared. Publicly available quantitative SPECT images for two patients treated with Lu-DOTATATE and PET images for two patients treated with Y-microspheres were used, including organs at risk ( Lu: kidneys; Y: liver and healthy liver) and tumors' segmentations. For each patient, the mean AD to the volumes of interest (VOIs) was calculated using the different DVKs, the same TIA map and the same software tool for dose convolution, thereby focusing on the DVK impact. For each VOI, the % maximum difference of the mean AD between maximum and minimum values was computed.
The CoV (% maximum difference) in voxels of normalized coordinates [0,0,0], [0,1,0], and [0,1,1] were 5%(21%), 9%(35%), and 10%(46%) for the Lu DVKs. For the case of Y, these values were 2%(9%), 4%(14%), and 4%(16%). The CoV (% maximum difference) for SUM was 9%(33%) for Lu, and 4%(15%) for Y. The variability of the mean tumor and organ AD was up to 19% and 15% in Lu-DOTATATE and Y-microspheres patients, respectively.
This study showed a considerable AD variability due exclusively to the use of different DVKs. A concerted effort by the scientific community would contribute to decrease these discrepancies, strengthening the consistency of AD calculation in RPT.
放射性药物治疗(RPT)是治疗癌症的一种越来越被采用的方法。有证据表明,基于剂量学优化治疗可以改善治疗效果。然而,临床剂量学工作流程的标准化仍然是一项艰巨的任务。在许多可变性来源中,使用不同的剂量体素核(DVK)通过与时间积分活性(TIA)分布卷积生成吸收剂量(AD)图的影响尚未得到系统研究。
本研究旨在比较不同的 DVK,并评估使用不同的 DVK 卷积相同的 TIA 图时 AD 的差异。
从商业/免费软件中最常用的或以前发表的研究中选择 3×3×3mm 采样的 9 个 Lu 和 9 个 Y 剂量体素核。对于每个 11×11×11 矩阵中的体素,计算变异系数(CoV)和最大值与最小值之间的差异百分比(%最大差异)。还比较了每个核素的总每衰变吸收剂量(SUM),即每个核素所有体素值的总和。使用了两名接受 Lu-DOTATATE 治疗的患者的公共定量 SPECT 图像和两名接受 Y 微球治疗的患者的 PET 图像,包括危险器官(Lu:肾脏;Y:肝脏和健康肝脏)和肿瘤的分割。对于每个患者,使用不同的 DVK、相同的 TIA 图和相同的剂量卷积软件工具计算感兴趣容积(VOI)的平均 AD,从而重点关注 DVK 的影响。对于每个 VOI,计算了最大和最小 AD 之间的平均 AD 的%最大差异。
归一化坐标[0,0,0]、[0,1,0]和[0,1,1]处 Lu 剂量体素核的 CoV(%最大差异)分别为 5%(21%)、9%(35%)和 10%(46%)。对于 Y 的情况,这些值分别为 2%(9%)、4%(14%)和 4%(16%)。Lu 的 SUM 的 CoV(%最大差异)为 9%(33%),Y 的 CoV 为 4%(15%)。Lu-DOTATATE 和 Y 微球患者的肿瘤和器官 AD 的变异性分别高达 19%和 15%。
本研究表明,由于仅使用不同的 DVK,AD 存在相当大的可变性。科学界的共同努力将有助于减少这些差异,从而加强 RPT 中 AD 计算的一致性。