Suppr超能文献

研究莱茵衣藻黑暗生长缺陷或生长较慢突变体的策略。

Strategies to Study Dark Growth Deficient or Slower Mutants in Chlamydomonas reinhardtii.

作者信息

Yang Huanling, Han Fei, Wang Yue, Yang Wenqiang, Tu Wenfeng

机构信息

Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Methods Mol Biol. 2021;2297:125-140. doi: 10.1007/978-1-0716-1370-2_13.

Abstract

Photosynthesis is the most important chemical reaction on the earth, and about 60% of the CO is fixed by algae through photosynthesis. Photosynthetic organisms including algae experience half of the entire life in the dark due to diel cycles, and dark metabolism is critical and necessary for photosynthetic organisms to restart photosynthesis when receiving light again. Briefly, dark metabolism provides necessary materials and energy for restoring photosynthesis, reoxidizes NADH to form NAD, rationally stores photosynthates, and maintains correct redox balance. Chlamydomonas reinhardtii grows under both autotrophic and heterotrophic conditions, making it an ideal organism to study photosynthesis, dark metabolism, and light dark transitions as well. In addition, it provides a good model to identify key molecular components and elucidate the molecular regulatory mechanisms of heterotrophic, which provides new clues to understand how photosynthetic organisms restart photosynthesis from the dark. Chlamydomonas mutants with dark growth deficiency or slower growth phenotypes are likely caused by the inefficient uptake and transport of acetate, the damaged proteins of mitochondrial electron transport chain, the malfunctioned mitochondrion, the redox state alteration in the dark or failed communication between mitochondrion and other organelles, the imbalanced redox or the disrupted distribution of the photosynthetic products. Here we summarize the methods and strategies for analyzing these mutants in Chlamydomonas reinhardtii.

摘要

光合作用是地球上最重要的化学反应,约60%的二氧化碳通过藻类的光合作用被固定。包括藻类在内的光合生物由于昼夜循环,在黑暗中度过其整个生命周期的一半,而暗代谢对于光合生物在再次接受光照时重新启动光合作用至关重要且必不可少。简而言之,暗代谢为恢复光合作用提供必要的物质和能量,将NADH重新氧化形成NAD,合理储存光合产物,并维持正确的氧化还原平衡。莱茵衣藻在自养和异养条件下均能生长,这使其成为研究光合作用、暗代谢以及光暗转换的理想生物。此外,它为鉴定关键分子成分和阐明异养的分子调控机制提供了一个良好的模型,为理解光合生物如何从黑暗中重新启动光合作用提供了新线索。莱茵衣藻中具有黑暗生长缺陷或生长缓慢表型的突变体,可能是由于乙酸盐摄取和运输效率低下、线粒体电子传递链蛋白受损、线粒体功能异常、黑暗中的氧化还原状态改变或线粒体与其他细胞器之间的通讯失败、氧化还原失衡或光合产物分布紊乱所致。在此,我们总结了分析莱茵衣藻中这些突变体的方法和策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验