Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
J Neurophysiol. 2021 Mar 1;125(3):862-874. doi: 10.1152/jn.00357.2020. Epub 2021 Mar 3.
In humans, practically all movements are learnt and performed in a constant gravitational field. Yet, studies on arm movements and object manipulation in parabolic flight have highlighted very fast sensorimotor adaptations to altered gravity environments. Here, we wondered if the motor adjustments observed in those altered gravity environments could also be observed on Earth in a situation where the body is upside-down. To address this question, we asked participants to perform rhythmic arm movements in two different body postures (right-side-up and upside-down) while holding an object in precision grip. Analyses of grip-load force coordination and of movement kinematics revealed distinct adaptation patterns between grip and arm control. Grip force and load force were tightly synchronized from the first movements performed in upside-down posture, reflecting a malleable allocentric grip control. In contrast, velocity profiles showed a more progressive adaptation to the upside-down posture and reflected an egocentric planning of arm kinematics. In addition to suggesting distinct mechanisms between grip dynamics and arm kinematics for adaptation to novel contexts, these results also suggest the existence of general mechanisms underlying gravity-dependent motor adaptation that can be used for fast sensorimotor coordination across different postures on Earth and, incidentally, across different gravitational conditions in parabolic flights, in human centrifuges, or in Space. During rhythmic arm movements performed in an upside-down posture, grip control adapted very quickly, but kinematics adaptation was more progressive. Our results suggest that grip control and movement kinematics planning might operate in different reference frames. Moreover, by comparing our results with previous results from parabolic flight studies, we propose that a common mechanism underlies adaptation to unfamiliar body postures and adaptation to altered gravity.
在人类中,几乎所有的动作都是在恒定的重力场中学习和完成的。然而,在抛物线飞行中对手臂运动和物体操作的研究强调了对改变重力环境的非常快速的感觉运动适应。在这里,我们想知道在那些改变的重力环境中观察到的运动调整是否也可以在地球上观察到,在这种情况下身体是颠倒的。为了解决这个问题,我们要求参与者在两种不同的身体姿势(正面朝上和颠倒)下进行有节奏的手臂运动,同时用精确握力握住物体。对握力-负载力协调和运动运动学的分析揭示了在颠倒姿势下,握力和手臂控制之间存在独特的适应模式。从第一次在颠倒姿势下进行的运动开始,握力和负载力就紧密地同步,反映了灵活的以自我为中心的握力控制。相比之下,速度曲线显示出对颠倒姿势的更渐进的适应,反映了手臂运动学的自我中心规划。除了表明适应新环境时握力动力学和手臂运动学之间存在独特的机制外,这些结果还表明,存在与重力依赖的运动适应相关的一般机制,这些机制可用于快速感觉运动协调,跨地球不同姿势,顺便说一句,在抛物线飞行、人体离心机或太空中的不同重力条件下。在颠倒姿势下进行有节奏的手臂运动时,握力控制适应非常快,但运动学适应更渐进。我们的结果表明,握力控制和运动运动学规划可能在不同的参考框架中运行。此外,通过将我们的结果与抛物线飞行研究的先前结果进行比较,我们提出适应不熟悉的身体姿势和适应改变的重力的共同机制。