Suppr超能文献

自适应学习算法优化行为健康移动应用程序:设计决策指南。

Adaptive learning algorithms to optimize mobile applications for behavioral health: guidelines for design decisions.

机构信息

School of Social Welfare, University of California Berkeley, Berkeley, California, USA.

UCSF Center for Vulnerable Populations, Zuckerberg San Francisco General Hospital, San Francisco, California, USA.

出版信息

J Am Med Inform Assoc. 2021 Jun 12;28(6):1225-1234. doi: 10.1093/jamia/ocab001.

Abstract

OBJECTIVE

Providing behavioral health interventions via smartphones allows these interventions to be adapted to the changing behavior, preferences, and needs of individuals. This can be achieved through reinforcement learning (RL), a sub-area of machine learning. However, many challenges could affect the effectiveness of these algorithms in the real world. We provide guidelines for decision-making.

MATERIALS AND METHODS

Using thematic analysis, we describe challenges, considerations, and solutions for algorithm design decisions in a collaboration between health services researchers, clinicians, and data scientists. We use the design process of an RL algorithm for a mobile health study "DIAMANTE" for increasing physical activity in underserved patients with diabetes and depression. Over the 1.5-year project, we kept track of the research process using collaborative cloud Google Documents, Whatsapp messenger, and video teleconferencing. We discussed, categorized, and coded critical challenges. We grouped challenges to create thematic topic process domains.

RESULTS

Nine challenges emerged, which we divided into 3 major themes: 1. Choosing the model for decision-making, including appropriate contextual and reward variables; 2. Data handling/collection, such as how to deal with missing or incorrect data in real-time; 3. Weighing the algorithm performance vs effectiveness/implementation in real-world settings.

CONCLUSION

The creation of effective behavioral health interventions does not depend only on final algorithm performance. Many decisions in the real world are necessary to formulate the design of problem parameters to which an algorithm is applied. Researchers must document and evaulate these considerations and decisions before and during the intervention period, to increase transparency, accountability, and reproducibility.

TRIAL REGISTRATION

clinicaltrials.gov, NCT03490253.

摘要

目的

通过智能手机提供行为健康干预措施,可以使这些干预措施适应个人不断变化的行为、偏好和需求。这可以通过强化学习(RL)来实现,这是机器学习的一个子领域。然而,许多挑战可能会影响这些算法在现实世界中的有效性。我们提供决策指南。

材料和方法

使用主题分析,我们描述了健康服务研究人员、临床医生和数据科学家之间合作中算法设计决策的挑战、考虑因素和解决方案。我们使用 RL 算法在“DIAMANTE”移动健康研究中设计方案,以增加糖尿病和抑郁症服务不足患者的身体活动量。在 1.5 年的项目中,我们使用协作式云 Google 文档、Whatsapp 消息和视频电话会议来跟踪研究过程。我们讨论、分类和编码了关键挑战。我们将挑战分组以创建主题主题过程域。

结果

出现了 9 个挑战,我们将其分为 3 个主要主题:1. 为决策选择模型,包括适当的上下文和奖励变量;2. 数据处理/收集,例如如何实时处理或纠正缺失或错误的数据;3. 在实际环境中权衡算法性能与有效性/实施。

结论

有效的行为健康干预的创建不仅仅取决于最终算法的性能。在现实世界中,许多决策都是必要的,这些决策是为了制定算法应用的问题参数的设计。研究人员必须在干预期间之前和期间记录和评估这些考虑因素和决策,以提高透明度、问责制和可重复性。

试验注册

clinicaltrials.gov,NCT03490253。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

2
A Deployed Online Reinforcement Learning Algorithm In An Oral Health Clinical Trial.一种应用于口腔健康临床试验的在线强化学习算法
Proc AAAI Conf Artif Intell. 2025;39(28):28792-28800. doi: 10.1609/aaai.v39i28.35143. Epub 2025 Apr 11.

本文引用的文献

1
IntelligentPooling: Practical Thompson Sampling for mHealth.智能池化:移动健康领域实用的汤普森采样法
Mach Learn. 2021 Sep;110(9):2685-2727. doi: 10.1007/s10994-021-05995-8. Epub 2021 Jun 21.
9
What is the clinical value of mHealth for patients?移动健康对患者的临床价值是什么?
NPJ Digit Med. 2020 Jan 13;3:4. doi: 10.1038/s41746-019-0206-x. eCollection 2020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验