Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK.
Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Evolutionary Anthropology, Duke University, Biological Sciences Building, 130 Science Drive, Durham, NC 27708, USA.
Curr Biol. 2021 May 10;31(9):1883-1892.e7. doi: 10.1016/j.cub.2021.02.009. Epub 2021 Mar 2.
The evolution of mammals from their extinct forerunners, the non-mammalian synapsids, is one of the most iconic locomotor transitions in the vertebrate fossil record. In the limb skeleton, the synapsid-mammal transition is traditionally characterized by a shift from a sprawling limb posture, resembling that of extant reptiles and amphibians, to more adducted limbs, as seen in modern-day mammals. Based on proposed postural similarities between early synapsids and extant reptiles, this change is thought to be accompanied by a shift from ancestral reptile-like lateral bending to mammal-like sagittal bending of the vertebral column. To test this "lateral-to-sagittal" evolutionary paradigm, we used combinatorial optimization to produce functionally informed adaptive landscapes and determined the functional trade-offs associated with evolutionary changes in vertebral morphology. We show that the synapsid adaptive landscape is different from both extant reptiles and mammals, casting doubt on the reptilian model for early synapsid axial function, or indeed for the ancestral condition of amniotes more broadly. Further, the synapsid-mammal transition is characterized by not only increasing sagittal bending in the posterior column but also high stiffness and increasing axial twisting in the anterior column. Therefore, we refute the simplistic lateral-to-sagittal hypothesis and instead suggest the synapsid-mammal locomotor transition involved a more complex suite of functional changes linked to increasing regionalization of the backbone. These results highlight the importance of fossil taxa for understanding major evolutionary transitions.
哺乳动物从已灭绝的祖先——似哺乳爬行动物进化而来,这是脊椎动物化石记录中最具标志性的运动方式转变之一。在肢体骨骼中,似哺乳爬行动物到哺乳动物的转变传统上以四肢从伸展姿势转变为更靠拢的姿势为特征,这种姿势类似于现代哺乳动物的姿势。基于早期似哺乳爬行动物与现存爬行动物之间假定的姿势相似性,这种变化被认为伴随着从祖先般的类似爬行动物的横向弯曲到类似哺乳动物的矢状弯曲的脊椎的转变。为了检验这种“横向到矢状”的进化范式,我们使用组合优化来生成功能相关的自适应景观,并确定与脊椎形态进化变化相关的功能权衡。我们表明,似哺乳爬行动物的适应景观与现存爬行动物和哺乳动物都不同,这使得早期似哺乳爬行动物的轴向功能的爬行动物模型受到质疑,或者更广泛地说,使羊膜动物的祖先状况受到质疑。此外,似哺乳爬行动物到哺乳动物的转变不仅表现在后柱的矢状弯曲增加,而且在前柱中还表现出高刚性和增加的轴向扭转。因此,我们驳斥了简单的横向到矢状的假说,而是提出似哺乳爬行动物到哺乳动物的运动方式转变涉及更复杂的一系列功能变化,这些变化与脊柱的区域化程度增加有关。这些结果强调了化石分类群对于理解主要进化转变的重要性。