He Y, Mulqueeney J M, Watt E C, Salili-James A, Barber N S, Camaiti M, Hunt E S E, Kippax-Chui O, Knapp A, Lanzetti A, Rangel-de Lázaro G, McMinn J K, Minus J, Mohan A V, Roberts L E, Adhami D, Grisan E, Gu Q, Herridge V, Poon S T S, West T, Goswami A
L ife Sciences, Natural History Museum, London, UK.
Department of Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.
Integr Org Biol. 2024 Sep 23;6(1):obae036. doi: 10.1093/iob/obae036. eCollection 2024.
Artificial intelligence (AI) is poised to revolutionize many aspects of science, including the study of evolutionary morphology. While classical AI methods such as principal component analysis and cluster analysis have been commonplace in the study of evolutionary morphology for decades, recent years have seen increasing application of deep learning to ecology and evolutionary biology. As digitized specimen databases become increasingly prevalent and openly available, AI is offering vast new potential to circumvent long-standing barriers to rapid, big data analysis of phenotypes. Here, we review the current state of AI methods available for the study of evolutionary morphology, which are most developed in the area of data acquisition and processing. We introduce the main available AI techniques, categorizing them into 3 stages based on their order of appearance: (1) machine learning, (2) deep learning, and (3) the most recent advancements in large-scale models and multimodal learning. Next, we present case studies of existing approaches using AI for evolutionary morphology, including image capture and segmentation, feature recognition, morphometrics, and phylogenetics. We then discuss the prospectus for near-term advances in specific areas of inquiry within this field, including the potential of new AI methods that have not yet been applied to the study of morphological evolution. In particular, we note key areas where AI remains underutilized and could be used to enhance studies of evolutionary morphology. This combination of current methods and potential developments has the capacity to transform the evolutionary analysis of the organismal phenotype into evolutionary phenomics, leading to an era of "big data" that aligns the study of phenotypes with genomics and other areas of bioinformatics.
人工智能(AI)有望彻底改变科学的许多方面,包括进化形态学研究。虽然主成分分析和聚类分析等经典人工智能方法在进化形态学研究中已存在数十年,但近年来深度学习在生态学和进化生物学中的应用越来越多。随着数字化标本数据库日益普及且可公开获取,人工智能为克服长期以来在表型快速大数据分析方面的障碍提供了巨大的新潜力。在此,我们回顾了可用于进化形态学研究的人工智能方法的当前状态,这些方法在数据采集和处理领域最为成熟。我们介绍了主要的可用人工智能技术,并根据其出现顺序将它们分为三个阶段:(1)机器学习,(2)深度学习,以及(3)大规模模型和多模态学习的最新进展。接下来,我们展示了使用人工智能进行进化形态学研究的现有方法的案例研究,包括图像捕捉与分割、特征识别、形态计量学和系统发育学。然后,我们讨论了该领域内特定研究领域近期进展的前景,包括尚未应用于形态进化研究的新人工智能方法的潜力。特别是,我们指出了人工智能仍未得到充分利用且可用于加强进化形态学研究的关键领域。当前方法与潜在发展的这种结合有能力将生物体表型的进化分析转变为进化表型组学,从而开启一个将表型研究与基因组学及其他生物信息学领域相结合的“大数据”时代。