Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Cambridge, MA, USA.
Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
Nat Ecol Evol. 2020 Mar;4(3):470-478. doi: 10.1038/s41559-020-1094-9. Epub 2020 Feb 3.
The evolution of semi-independent modules is hypothesized to underlie the functional diversification of serially repeating (metameric) structures. The mammal vertebral column is a classic example of a metameric structure that is both modular, with well-defined morphological regions, and functionally differentiated. How the evolution of regions is related to their functional differentiation in the forerunners of mammals remains unclear. Here we gathered morphometric and biomechanical data on the presacral vertebrae of two extant species that bracket the synapsid-mammal transition and use the relationship between form and function to predict functional differentiation in extinct non-mammalian synapsids. The origin of vertebral functional diversity does not correlate with the evolution of new regions but appears late in synapsid evolution. This decoupling of regions from functional diversity implies that an adaptive trigger is needed to exploit existing modularity. We propose that the release of axial respiratory constraints, combined with selection for novel mammalian behaviours in Late Triassic cynodonts, drove the functional divergence of pre-existing morphological regions.
半独立模块的进化被假设为串联重复(分节)结构功能多样化的基础。哺乳动物的脊柱是分节结构的一个经典例子,它既有明确的形态区域,又具有功能分化。在哺乳动物的先驱中,区域的进化如何与它们的功能分化相关,这仍然不清楚。在这里,我们收集了两种现存物种的荐前椎骨的形态计量学和生物力学数据,这些数据涵盖了合弓动物-哺乳动物的过渡时期,并利用形态和功能之间的关系来预测已灭绝的非哺乳动物合弓动物的功能分化。脊椎功能多样性的起源与新区域的进化无关,而是出现在合弓动物进化的后期。这种区域与功能多样性的解耦意味着需要一个适应性触发因素来利用现有的模块性。我们提出,轴向呼吸限制的释放,加上晚三叠世兽孔目动物对新型哺乳动物行为的选择,推动了先前存在的形态区域的功能分化。