Suppr超能文献

中央域折叠中的构象变化和协同作用。

Shape changes and cooperativity in the folding of the central domain of the 16S ribosomal RNA.

机构信息

Department of Chemistry, University of Texas at Austin, Austin, TX 78712.

School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2020837118.

Abstract

Both the small and large subunits of the ribosome, the molecular machine that synthesizes proteins, are complexes of ribosomal RNAs (rRNAs) and a number of proteins. In bacteria, the small subunit has a single 16S rRNA whose folding is the first step in its assembly. The central domain of the 16S rRNA folds independently, driven either by Mg ions or by interaction with ribosomal proteins. To provide a quantitative description of ion-induced folding of the ∼350-nucleotide rRNA, we carried out extensive coarse-grained molecular simulations spanning Mg concentration between 0 and 30 mM. The Mg dependence of the radius of gyration shows that globally the rRNA folds cooperatively. Surprisingly, various structural elements order at different Mg concentrations, indicative of the heterogeneous assembly even within a single domain of the rRNA. Binding of Mg ions is highly specific, with successive ion condensation resulting in nucleation of tertiary structures. We also predict the Mg-dependent protection factors, measurable in hydroxyl radical footprinting experiments, which corroborate the specificity of Mg-induced folding. The simulations, which agree quantitatively with several experiments on the folding of a three-way junction, show that its folding is preceded by formation of other tertiary contacts in the central junction. Our work provides a starting point in simulating the early events in the assembly of the small subunit of the ribosome.

摘要

核糖体是合成蛋白质的分子机器,其由核糖体 RNA(rRNA)和一些蛋白质组成。在细菌中,小亚基只有一个 16S rRNA,其折叠是组装的第一步。16S rRNA 的中心结构域独立折叠,由镁离子或与核糖体蛋白相互作用驱动。为了提供对约 350 个核苷酸 rRNA 离子诱导折叠的定量描述,我们进行了广泛的粗粒度分子模拟,跨越了 0 至 30mM 的 Mg 浓度范围。旋转半径的 Mg 依赖性表明,rRNA 整体上是协同折叠的。令人惊讶的是,各种结构元素在不同的 Mg 浓度下有序排列,表明即使在 rRNA 的单个结构域内也存在异质组装。Mg 离子的结合具有高度特异性,连续的离子凝聚导致三级结构的成核。我们还预测了在羟基自由基足迹实验中可测量的 Mg 依赖性保护因子,这证实了 Mg 诱导折叠的特异性。模拟结果与三链结折叠的几个实验在定量上一致,表明其折叠前先形成中央结中的其他三级接触。我们的工作为模拟核糖体小亚基组装的早期事件提供了一个起点。

相似文献

1
Shape changes and cooperativity in the folding of the central domain of the 16S ribosomal RNA.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2020837118.
2
RNA folding pathways and the self-assembly of ribosomes.
Acc Chem Res. 2011 Dec 20;44(12):1312-9. doi: 10.1021/ar2000474. Epub 2011 Jun 29.
4
Protein-independent folding pathway of the 16S rRNA 5' domain.
J Mol Biol. 2005 Aug 19;351(3):508-19. doi: 10.1016/j.jmb.2005.06.020.
9
RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA.
Science. 1989 May 19;244(4906):783-90. doi: 10.1126/science.2658053.
10
Transient Protein-RNA Interactions Guide Nascent Ribosomal RNA Folding.
Cell. 2019 Nov 27;179(6):1357-1369.e16. doi: 10.1016/j.cell.2019.10.035. Epub 2019 Nov 21.

引用本文的文献

1
Transient ion-mediated interactions regulate subunit rotation in a eukaryotic ribosome.
bioRxiv. 2025 Aug 12:2025.08.09.669508. doi: 10.1101/2025.08.09.669508.
2
Interaction of Selected Anthracycline and Tetracycline Chemotherapeutics with Poly(I:C) Molecules.
ACS Omega. 2025 Apr 15;10(16):15935-15946. doi: 10.1021/acsomega.4c05483. eCollection 2025 Apr 29.
4
Improving microbial phylogeny with citizen science within a mass-market video game.
Nat Biotechnol. 2025 Jan;43(1):76-84. doi: 10.1038/s41587-024-02175-6. Epub 2024 Apr 15.
7
Odd-even disparity in the population of slipped hairpins in RNA repeat sequences with implications for phase separation.
Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2301409120. doi: 10.1073/pnas.2301409120. Epub 2023 Jun 5.
9
Condensates in RNA repeat sequences are heterogeneously organized and exhibit reptation dynamics.
Nat Chem. 2022 Jul;14(7):775-785. doi: 10.1038/s41557-022-00934-z. Epub 2022 May 2.
10
The energetics of subunit rotation in the ribosome.
Biophys Rev. 2021 Dec 4;13(6):1029-1037. doi: 10.1007/s12551-021-00877-8. eCollection 2021 Dec.

本文引用的文献

1
Charge Density of Cation Determines Inner versus Outer Shell Coordination to Phosphate in RNA.
J Phys Chem B. 2020 May 21;124(20):4114-4122. doi: 10.1021/acs.jpcb.0c02371. Epub 2020 May 11.
2
Ion Condensation onto Ribozyme Is Site Specific and Fold Dependent.
Biophys J. 2019 Jun 18;116(12):2400-2410. doi: 10.1016/j.bpj.2019.04.037. Epub 2019 May 11.
3
Site-Specific Binding of Non-Site-Specific Ions.
Biophys J. 2019 Jun 18;116(12):2237-2239. doi: 10.1016/j.bpj.2019.04.038. Epub 2019 May 11.
4
RNApdbee 2.0: multifunctional tool for RNA structure annotation.
Nucleic Acids Res. 2018 Jul 2;46(W1):W30-W35. doi: 10.1093/nar/gky314.
5
Entropic stabilization of the folded states of RNA due to macromolecular crowding.
Biophys Rev. 2013 Jun;5(2):225-232. doi: 10.1007/s12551-013-0119-x. Epub 2013 Apr 18.
6
Structure and dynamics of bacterial ribosome biogenesis.
Philos Trans R Soc Lond B Biol Sci. 2017 Mar 19;372(1716). doi: 10.1098/rstb.2016.0181.
7
Protein-RNA Dynamics in the Central Junction Control 30S Ribosome Assembly.
J Mol Biol. 2016 Sep 11;428(18):3615-31. doi: 10.1016/j.jmb.2016.05.010. Epub 2016 May 15.
8
Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting.
Methods. 2016 Jul 1;103:49-56. doi: 10.1016/j.ymeth.2016.03.012. Epub 2016 Mar 22.
9
FreeSASA: An open source C library for solvent accessible surface area calculations.
F1000Res. 2016 Feb 18;5:189. doi: 10.12688/f1000research.7931.1. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验