Suppr超能文献

酿造咖啡:用于DNA-蛋白质复合物模拟的序列特异性粗粒度能量函数。

Brewing COFFEE: A sequence-specific coarse-grained energy function for simulations of DNA-protein complexes.

作者信息

Chakraborty Debayan, Mondal Balaka, Thirumalai D

机构信息

Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Stop A5300, Austin TX 78712, USA.

Department of Physics, The University of Texas at Austin, 2515 Speedway,Austin TX 78712, USA.

出版信息

bioRxiv. 2023 Aug 1:2023.06.07.544064. doi: 10.1101/2023.06.07.544064.

Abstract

DNA-protein interactions are pervasive in a number of biophysical processes ranging from transcription, gene expression, to chromosome folding. To describe the structural and dynamic properties underlying these processes accurately, it is important to create transferable computational models. Toward this end, we introduce arse grained orce ield for nergy stimation, COFFEE, a robust framework for simulating DNA-protein complexes. To brew COFFEE, we integrated the energy function in the Self-Organized Polymer model with Side Chains for proteins and the Three Interaction Site model for DNA in a modular fashion, without re-calibrating any of the parameters in the original force-fields. A unique feature of COFFEE is that it describes sequence-specific DNA-protein interactions using a statistical potential (SP) derived from a dataset of high-resolution crystal structures. The only parameter in COFFEE is the strength () of the DNA-protein contact potential. For an optimal choice of , the crystallographic B-factors for DNA-protein complexes, with varying sizes and topologies, are quantitatively reproduced. Without any further readjustments to the force-field parameters, COFFEE predicts the scattering profiles that are in with SAXS experiments as well as chemical shifts that are consistent with NMR. We also show that COFFEE accurately describes the salt-induced unraveling of nucleosomes. Strikingly, our nucleosome simulations explain the destabilization effect of ARG to LYS mutations, which does not alter the balance of electrostatic interactions, but affects chemical interactions in subtle ways. The range of applications attests to the transferability of COFFEE, and we anticipate that it would be a promising framework for simulating DNA-protein complexes at the molecular length-scale.

摘要

DNA与蛋白质的相互作用在许多生物物理过程中普遍存在,这些过程涵盖从转录、基因表达到染色体折叠等。为了准确描述这些过程背后的结构和动态特性,创建可转移的计算模型非常重要。为此,我们引入了用于能量估计的粗粒度力场COFFEE,这是一个用于模拟DNA-蛋白质复合物的强大框架。为了构建COFFEE,我们以模块化方式将自组织聚合物模型中的能量函数与蛋白质的侧链以及DNA的三相互作用位点模型相结合,而无需重新校准原始力场中的任何参数。COFFEE的一个独特特征是,它使用从高分辨率晶体结构数据集中导出的统计势(SP)来描述序列特异性的DNA-蛋白质相互作用。COFFEE中唯一的参数是DNA-蛋白质接触势的强度()。对于的最佳选择,可以定量再现不同大小和拓扑结构的DNA-蛋白质复合物的晶体学B因子。无需对力场参数进行任何进一步调整,COFFEE就能预测与小角X射线散射(SAXS)实验相符的散射曲线以及与核磁共振(NMR)一致的化学位移。我们还表明,COFFEE能够准确描述盐诱导的核小体解聚。引人注目的是,我们的核小体模拟解释了精氨酸到赖氨酸突变的去稳定化效应,这种突变不会改变静电相互作用的平衡,但会以微妙的方式影响化学相互作用。应用范围证明了COFFEE的可转移性,我们预计它将成为在分子长度尺度上模拟DNA-蛋白质复合物的一个有前途的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caad/10395216/4c6454dfdd3a/nihpp-2023.06.07.544064v2-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验