Centre for Molecular Simulation and Department of Biological Sciences, 507 Campus Drive, University of Calgary, Calgary, AB, Canada.
Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, 3280 Hospital Dr., University of Calgary, Calgary, AB, Canada.
Nat Commun. 2021 Mar 3;12(1):1409. doi: 10.1038/s41467-021-21681-8.
The lipid regulation of mammalian ion channel function has emerged as a fundamental mechanism in the control of electrical signalling and transport specificity in various cell types. In this work, we combine molecular dynamics simulations, mutagenesis, and electrophysiology to provide mechanistic insights into how lipophilic molecules (ceramide-sphingolipid probe) alter gating kinetics and K currents of hERG1. We show that the sphingolipid probe induced a significant left shift of activation voltage, faster deactivation rates, and current blockade comparable to traditional hERG1 blockers. Microseconds-long MD simulations followed by experimental mutagenesis elucidated ceramide specific binding locations at the interface between the pore and voltage sensing domains. This region constitutes a unique crevice present in mammalian channels with a non-swapped topology. The combined experimental and simulation data provide evidence for ceramide-induced allosteric modulation of the channel by a conformational selection mechanism.
哺乳动物离子通道功能的脂质调节已成为控制各种细胞类型电信号传递和转运特异性的基本机制。在这项工作中,我们结合分子动力学模拟、突变和电生理学,提供了关于亲脂性分子(神经酰胺-鞘脂探针)如何改变 hERG1 的门控动力学和 K 电流的机制见解。我们表明,神经酰胺探针诱导激活电压发生显著的左移,失活速率加快,并且电流阻断与传统的 hERG1 阻断剂相当。微秒级的 MD 模拟后进行实验性突变,阐明了在孔和电压感应结构域之间的界面处神经酰胺的特异性结合位置。该区域构成了具有非交换拓扑结构的哺乳动物通道中独特的缝隙。组合的实验和模拟数据为神经酰胺通过构象选择机制诱导通道的变构调节提供了证据。