利用高光谱成像结合深度学习神经网络和荟萃分析评估鱼片总挥发性碱性氮(TVB-N)含量。

Evaluation of the total volatile basic nitrogen (TVB-N) content in fish fillets using hyperspectral imaging coupled with deep learning neural network and meta-analysis.

机构信息

Seafood Processing Research Group, Department of Food Science and Technology, School of Agriculture, Shiraz University, P.O. Box 71441-65186, Shiraz, Iran.

Seafood Processing Research Group, School of Agriculture, Shiraz University, P.O. Box 71441-65186, Shiraz, Iran.

出版信息

Sci Rep. 2021 Mar 3;11(1):5094. doi: 10.1038/s41598-021-84659-y.

Abstract

Recently, hyperspectral-imaging (HSI), as a rapid and non-destructive technique, has generated much interest due to its unique potential to monitor food quality and safety. The specific aim of the study is to investigate the potential of the HSI (430-1010 nm) coupled with Linear Deep Neural Network (LDNN) to predict the TVB-N content of rainbow trout fillet during 12 days storage at 4 ± 2 °C. After the acquisition of hyperspectral images, the TVB-N content of fish fillets was obtained by a conventional method (micro-Kjeldahl distillation). To simplify the calibration models, nine optimal wavelengths were selected by the successive projections algorithm. A seven layers LDNN was designed to estimate the TVB-N content of samples. The LDNN model showed acceptable performance for prediction of TVB-N content of fish fillet (Rp = 0.853; RSMEP = 3.159 and RDP = 3.001). The performance of LDNN model was comparable with the results of previous works. Although, the results of the meta-analysis did not show any significant difference between various chemometric models. However, the least-squares support vector machine algorithm showed better prediction results as compared to the other models (RMSEP: 2.63 and R = 0.897). Further studies are required to improve the prediction power of the deep learning model for prediction of rainbow-trout fish quality.

摘要

最近,高光谱成像(HSI)作为一种快速、无损的技术,由于其在监测食品质量和安全方面的独特潜力而引起了广泛关注。本研究的目的是研究 HSI(430-1010nm)与线性深度神经网络(LDNN)相结合,预测在 4±2°C 下储存 12 天的虹鳟鱼片 TVB-N 含量的潜力。在获得高光谱图像后,通过传统方法(微量凯氏蒸馏)获得鱼片的 TVB-N 含量。为了简化校准模型,通过连续投影算法选择了 9 个最佳波长。设计了一个具有七个层的 LDNN 来估计样品的 TVB-N 含量。LDNN 模型对预测鱼片的 TVB-N 含量具有良好的性能(Rp=0.853;RSMEP=3.159 和 RDP=3.001)。LDNN 模型的性能与先前工作的结果相当。尽管荟萃分析的结果表明各种化学计量模型之间没有显著差异。然而,与其他模型相比,最小二乘支持向量机算法显示出更好的预测结果(RMSEP:2.63 和 R=0.897)。需要进一步的研究来提高深度学习模型对虹鳟鱼质量预测的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc8f/7930251/13033aa08180/41598_2021_84659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索