Suppr超能文献

机器学习与高光谱成像在食品供应链中的进展。

Advances in Machine Learning and Hyperspectral Imaging in the Food Supply Chain.

作者信息

Kang Zhilong, Zhao Yuchen, Chen Lei, Guo Yanju, Mu Qingshuang, Wang Shenyi

机构信息

School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, China.

School of Information Engineering, Tianjin University of Commerce, Tianjin, 300134 China.

出版信息

Food Eng Rev. 2022;14(4):596-616. doi: 10.1007/s12393-022-09322-2. Epub 2022 Sep 6.

Abstract

Food quality and safety are the essential hot issues of social concern. In recent years, there has been a growing demand for real-time food information, and non-destructive testing is gradually replacing traditional manual sensory testing and chemical analysis methods with lagging and destructive effects and has strong potential for application in the food supply chain. With the maturity and development of computer science and spectroscopic techniques, machine learning and hyperspectral imaging (HSI) have been widely demonstrated as efficient detection techniques that can be applied to rapidly evaluate sensory characteristics and quality attributes of food products nondestructively and efficiently. This paper first briefly described the basic concepts of hyperspectral imaging and machine learning, including the imaging process of HSI, the type of algorithms contained in machine learning, and the data processing flow. Secondly, this paper provided an objective and comprehensive overview of the current applications of machine learning and HSI in the food supply chain for sorting, packaging, transportation, storage, and sales, based on the state-of-art literature from 2017 to 2022. Finally, the potential of the technology is further discussed to provide optimized ideas for practical application.

摘要

食品质量与安全是社会关注的重要热点问题。近年来,对实时食品信息的需求日益增长,无损检测正逐渐取代传统的手工感官检测和具有滞后性及破坏性的化学分析方法,在食品供应链中具有强大的应用潜力。随着计算机科学和光谱技术的成熟与发展,机器学习和高光谱成像(HSI)已被广泛证明是高效的检测技术,可用于无损且高效地快速评估食品的感官特性和质量属性。本文首先简要介绍了高光谱成像和机器学习的基本概念,包括高光谱成像的成像过程、机器学习中包含的算法类型以及数据处理流程。其次,基于2017年至2022年的最新文献,本文对机器学习和高光谱成像在食品供应链的分拣、包装、运输、储存和销售中的当前应用进行了客观全面的概述。最后,进一步探讨了该技术的潜力,为实际应用提供优化思路。

相似文献

1
Advances in Machine Learning and Hyperspectral Imaging in the Food Supply Chain.
Food Eng Rev. 2022;14(4):596-616. doi: 10.1007/s12393-022-09322-2. Epub 2022 Sep 6.
2
Progress in machine learning-supported electronic nose and hyperspectral imaging technologies for food safety assessment: A review.
Food Res Int. 2025 May;209:116285. doi: 10.1016/j.foodres.2025.116285. Epub 2025 Mar 17.
3
Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review.
Curr Res Food Sci. 2021 Feb 3;4:28-44. doi: 10.1016/j.crfs.2021.01.002. eCollection 2021.
5
Hyperspectral Imaging (HSI) for meat quality evaluation across the supply chain: Current and future trends.
Curr Res Food Sci. 2022 Jun 3;5:1017-1027. doi: 10.1016/j.crfs.2022.05.016. eCollection 2022.
6
[Research advances in imaging technology for food safety and quality control].
Se Pu. 2020 Jul 8;38(7):741-749. doi: 10.3724/SP.J.1123.2020.03015.
8
[Application and prospects of hyperspectral imaging and deep learning in traditional Chinese medicine in context of AI and industry 4.0].
Zhongguo Zhong Yao Za Zhi. 2020 Nov;45(22):5438-5442. doi: 10.19540/j.cnki.cjcmm.20200630.603.
9
Recent Progress of Hyperspectral Imaging on Quality and Safety Inspection of Fruits and Vegetables: A Review.
Compr Rev Food Sci Food Saf. 2015 Mar;14(2):176-188. doi: 10.1111/1541-4337.12123. Epub 2015 Jan 20.

本文引用的文献

1
Fusion of electronic nose and hyperspectral imaging for mutton freshness detection using input-modified convolution neural network.
Food Chem. 2022 Aug 15;385:132651. doi: 10.1016/j.foodchem.2022.132651. Epub 2022 Mar 9.
3
Application of hyperspectral imaging technology in the rapid identification of microplastics in farmland soil.
Sci Total Environ. 2022 Feb 10;807(Pt 3):151030. doi: 10.1016/j.scitotenv.2021.151030. Epub 2021 Oct 18.
7
Hyperspectral monitor of soil chromium contaminant based on deep learning network model in the Eastern Junggar coalfield.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Aug 5;257:119739. doi: 10.1016/j.saa.2021.119739. Epub 2021 Mar 26.
8
A spectral characteristic analysis method for distinguishing heavy metal pollution in crops: VMD-PCA-SVM.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Jul 5;255:119649. doi: 10.1016/j.saa.2021.119649. Epub 2021 Mar 9.
10
Quality evaluation of Keemun black tea by fusing data obtained from near-infrared reflectance spectroscopy and computer vision sensors.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 May 5;252:119522. doi: 10.1016/j.saa.2021.119522. Epub 2021 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验