Vu Duc Tu, Le Thanh-Thu Vu, Hsu Chia-Chen, Lai Ngoc Diep, Hecquet Christophe, Benisty Henri
Laboratoire Charles Fabry, CNRS, Institut d'Optique Graduate School, Université Paris-Saclay, Palaiseau, 91127, France.
Faculty of Electrical and Electronics Engineering, Phenikaa University, Yen Nghia, Ha-Dong District, Hanoi, 10000, Vietnam.
Biomed Opt Express. 2020 Dec 2;12(1):1-19. doi: 10.1364/BOE.405759. eCollection 2021 Jan 1.
We introduce a compact array fluorescence sensor principle that takes advantage of the long luminescence lifetimes of upconversion nanoparticles (UCNPs) to deploy a filter-free, optics-less contact geometry, advantageous for modern biochemical assays of biomolecules, pollutants or cells. Based on technologically mature CMOS chips for ∼10 kHz technical/scientific imaging, we propose a contact geometry between assayed molecules or cells and a CMOS chip that makes use of only a faceplate or direct contact, employing time-window management to reject the 975 nm excitation light of highly efficient UCNPs. The chip surface is intended to implement, in future devices, a resonant waveguide grating (RWG) to enhance excitation efficiency, aiming at the improvement of upconversion luminescence emission intensity of UCNP deposited atop of such an RWG structure. Based on mock-up experiments that assess the actual chip rejection performance, we bracket the photometric figures of merit of such a promising chip principle and predict a limit of detection around 10-100 nanoparticles.
我们介绍了一种紧凑型阵列荧光传感器原理,该原理利用上转换纳米颗粒(UCNP)的长发光寿命,采用无滤光片、无光学元件的接触式结构,这对生物分子、污染物或细胞的现代生化分析非常有利。基于技术成熟的用于约10 kHz技术/科学成像的CMOS芯片,我们提出了一种被测分子或细胞与CMOS芯片之间的接触式结构,该结构仅使用面板或直接接触,并采用时间窗口管理来滤除高效UCNP的975 nm激发光。芯片表面旨在在未来设备中实现共振波导光栅(RWG)以提高激发效率,目标是提高沉积在这种RWG结构顶部的UCNP的上转换发光发射强度。基于评估实际芯片滤除性能的模型实验,我们确定了这种有前景的芯片原理的光度品质因数,并预测检测限约为10 - 100个纳米颗粒。