Suppr超能文献

从成年小鼠制备用于尖波涟漪研究的活海马切片。

Preparing Viable Hippocampal Slices from Adult Mice for the Study of Sharp Wave-ripples.

作者信息

Liu Linhua, Zhou Xiaojing, Wu Jian-Young

机构信息

Department of Neuroscience, Georgetown University Medical center, Washington DC, 20007, USA.

Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan 523808, PR China.

出版信息

Bio Protoc. 2020 Oct 5;10(19):e3771. doi: 10.21769/BioProtoc.3771.

Abstract

We describe a protocol for preparing acute brain slices which can produce robust hippocampal sharp wave-ripples (SWRs) . The protocol is optimized for its simplicity and reliability for the preparation of solutions, slicing, and recovery incubation. Most slices in almost every mouse prepared though the protocol expressed vigorous spontaneous SWRs for 24 h, compared to the 20-30% viability from "standard" low sodium slicing protocols. SWRs are spontaneous neuronal activity in the hippocampus and are essential for consolidation of episodic memory. Brain slices reliably expressing SWRs are useful for studying memory impairment and brain degeneration diseases in experiments. Spontaneous expression of SWRs is sensitive to conditions of slicing and perfusion/oxygenation during recording. The amplitude and abundance of SWRs are often used as a biomarker for viable slices. Key improvements include fast circulation, a long recovery period (3-6 h) after slicing, and allowing tissue to recover at 32 °C in a well perfused incubation chamber. Slices in our custom-made apparatus can express spontaneous SWRs for many hours, suggesting a long period with balanced excitation and inhibition in the local networks. Slices from older mice (postnatal 180 days) show similar viability to younger (postnatal 21-30) mice.

摘要

我们描述了一种制备急性脑片的方法,该方法能够产生强烈的海马体尖波涟漪(SWRs)。该方法在溶液制备、切片和恢复孵育方面进行了优化,具有简单性和可靠性。通过该方法制备的几乎每只小鼠的大多数脑片在约24小时内都表现出强烈的自发SWRs,相比之下,“标准”低钠切片方法的存活率为20 - 30%。SWRs是海马体中的自发神经元活动,对情景记忆的巩固至关重要。可靠表达SWRs的脑片在实验中对于研究记忆障碍和脑退行性疾病很有用。SWRs的自发表达对切片条件以及记录过程中的灌注/氧合情况很敏感。SWRs的幅度和丰度常被用作活脑片的生物标志物。关键改进包括快速循环、切片后较长的恢复期(3 - 6小时)以及在灌注良好的孵育室中于32°C让组织恢复。我们定制设备中的脑片能够数小时表达自发SWRs,这表明局部网络中存在长时间的兴奋与抑制平衡。老年小鼠(约出生后180天)的脑片与年轻(出生后21 - 30天)小鼠的脑片具有相似的存活率。

相似文献

1
Preparing Viable Hippocampal Slices from Adult Mice for the Study of Sharp Wave-ripples.
Bio Protoc. 2020 Oct 5;10(19):e3771. doi: 10.21769/BioProtoc.3771.
2
Pacing Hippocampal Sharp-Wave Ripples With Weak Electric Stimulation.
Front Neurosci. 2018 Mar 15;12:164. doi: 10.3389/fnins.2018.00164. eCollection 2018.
5
Postnatal Maturation of Membrane Potential Dynamics during Hippocampal Ripples.
J Neurosci. 2023 Aug 30;43(35):6126-6140. doi: 10.1523/JNEUROSCI.0125-23.2023. Epub 2023 Jul 3.
6
Dentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice.
J Neurosci. 2020 Sep 9;40(37):7105-7118. doi: 10.1523/JNEUROSCI.2275-19.2020. Epub 2020 Aug 19.
8
Hippocampal sharp waves and ripples: Effects of aging and modulation by NMDA receptors and L-type Ca2+ channels.
Neuroscience. 2015 Jul 9;298:26-41. doi: 10.1016/j.neuroscience.2015.04.012. Epub 2015 Apr 11.
10
Coordination of Human Hippocampal Sharpwave Ripples during NREM Sleep with Cortical Theta Bursts, Spindles, Downstates, and Upstates.
J Neurosci. 2019 Oct 30;39(44):8744-8761. doi: 10.1523/JNEUROSCI.2857-18.2019. Epub 2019 Sep 18.

引用本文的文献

1
Enhanced electrophysiological recordings in acute brain slices, spheroids, and organoids using 3D high-density multielectrode arrays.
PLoS One. 2025 Sep 4;20(9):e0328903. doi: 10.1371/journal.pone.0328903. eCollection 2025.
2
Brain-derived neurotrophic factor levels and oxidative stress in autism: evidence from children and a mouse model.
J Psychiatry Neurosci. 2025 Jul 25;50(4):E218-E233. doi: 10.1503/jpn.250087. Print 2025 Jul-Aug.
4
The inhibitory control of traveling waves in cortical networks.
PLoS Comput Biol. 2023 Sep 5;19(9):e1010697. doi: 10.1371/journal.pcbi.1010697. eCollection 2023 Sep.
5
Prenatal Progestin Exposure-Mediated Oxytocin Suppression Contributes to Social Deficits in Mouse Offspring.
Front Endocrinol (Lausanne). 2022 Mar 15;13:840398. doi: 10.3389/fendo.2022.840398. eCollection 2022.

本文引用的文献

2
Measuring Sharp Waves and Oscillatory Population Activity With the Genetically Encoded Calcium Indicator GCaMP6f.
Front Cell Neurosci. 2019 Jun 19;13:274. doi: 10.3389/fncel.2019.00274. eCollection 2019.
3
Pacing Hippocampal Sharp-Wave Ripples With Weak Electric Stimulation.
Front Neurosci. 2018 Mar 15;12:164. doi: 10.3389/fnins.2018.00164. eCollection 2018.
5
Disruption of perineuronal nets increases the frequency of sharp wave ripple events.
Hippocampus. 2018 Jan;28(1):42-52. doi: 10.1002/hipo.22804. Epub 2017 Sep 26.
6
Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning.
Hippocampus. 2015 Oct;25(10):1073-188. doi: 10.1002/hipo.22488.
7
Activity-dependent plasticity of mouse hippocampal assemblies in vitro.
Front Neural Circuits. 2015 May 18;9:21. doi: 10.3389/fncir.2015.00021. eCollection 2015.
8
Mechanisms of sharp wave initiation and ripple generation.
J Neurosci. 2014 Aug 20;34(34):11385-98. doi: 10.1523/JNEUROSCI.0867-14.2014.
9
Dopamine receptor activation reorganizes neuronal ensembles during hippocampal sharp waves in vitro.
PLoS One. 2014 Aug 4;9(8):e104438. doi: 10.1371/journal.pone.0104438. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验