Wirth Regina, Gao Peng, Nienhaus G Ulrich, Sunbul Murat, Jäschke Andres
Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany.
Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany.
Bio Protoc. 2020 May 5;10(9):e3603. doi: 10.21769/BioProtoc.3603.
Genetically encoded light-up RNA aptamers have been shown to be promising tools for the visualization of RNAs in living cells, helping us to advance our understanding of the broad and complex life of RNA. Although a handful of light-up aptamers spanning the visible wavelength region have been developed, none of them have yet been reported to be compatible with advanced super-resolution techniques, mainly due to poor photophysical properties of their small-molecule fluorogens. Here, we describe a detailed protocol for fluorescence microscopy of mRNA in live bacteria using the recently reported fluorogenic silicon rhodamine binding aptamer (SiRA) featuring excellent photophysical properties. Notably, with SiRA, we demonstrated the first aptamer-based RNA visualization using super-resolution (STED) microscopy. This imaging method can be especially valuable for visualization of RNA in prokaryotes since the size of a bacterium is only a few times greater than the optical resolution of a conventional microscope.
基因编码的发光RNA适配体已被证明是用于活细胞中RNA可视化的有前途的工具,有助于我们推进对RNA广泛而复杂生命的理解。尽管已经开发了一些跨越可见波长区域的发光适配体,但尚未有报道称它们与先进的超分辨率技术兼容,主要是因为其小分子荧光团的光物理性质较差。在这里,我们描述了一种详细的方案,用于使用最近报道的具有优异光物理性质的荧光硅罗丹明结合适配体(SiRA)对活细菌中的mRNA进行荧光显微镜检查。值得注意的是,使用SiRA,我们首次展示了基于适配体的超分辨率(STED)显微镜RNA可视化。这种成像方法对于原核生物中RNA的可视化可能特别有价值,因为细菌的大小仅比传统显微镜的光学分辨率大几倍。