Etheredge Robert Ian, Schartl Manfred, Jordan Alex
Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany.
Center for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany.
Patterns (N Y). 2021 Jan 21;2(2):100193. doi: 10.1016/j.patter.2020.100193. eCollection 2021 Feb 12.
Apart from discriminative modeling, the application of deep convolutional neural networks to basic research utilizing natural imaging data faces unique hurdles. Here, we present decontextualized hierarchical representation learning (DHRL), designed specifically to overcome these limitations. DHRL enables the broader use of small datasets, which are typical in most studies. It also captures spatial relationships between features, provides novel tools for investigating latent variables, and achieves state-of-the-art disentanglement scores on small datasets. DHRL is enabled by a novel preprocessing technique inspired by generative model chaining and an improved ladder network architecture and regularization scheme. More than an analytical tool, DHRL enables novel capabilities for virtual experiments performed directly on a latent representation, which may transform the way we perform investigations of natural image features, directly integrating analytical, empirical, and theoretical approaches.
除了判别建模之外,将深度卷积神经网络应用于利用自然成像数据的基础研究面临着独特的障碍。在此,我们提出了去上下文层次表示学习(DHRL),其专门设计用于克服这些限制。DHRL能够更广泛地使用小数据集,这在大多数研究中很常见。它还能捕捉特征之间的空间关系,为研究潜在变量提供新颖的工具,并在小数据集上实现了最先进的解缠分数。DHRL由一种受生成模型链启发的新型预处理技术以及改进的梯形网络架构和正则化方案所支持。DHRL不仅仅是一种分析工具,它还为直接在潜在表示上进行的虚拟实验提供了新的能力,这可能会改变我们对自然图像特征进行研究的方式,直接整合分析、实证和理论方法。