Suppr超能文献

感染性重组塞尼卡病毒 A 表达新型报告蛋白。

Infectious recombinant Senecavirus A expressing novel reporter proteins.

机构信息

College of Veterinary Medicine, Yangzhou University, 12 Wen-hui East Road, Yangzhou, JS225009, China.

Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.

出版信息

Appl Microbiol Biotechnol. 2021 Mar;105(6):2385-2397. doi: 10.1007/s00253-021-11181-6. Epub 2021 Mar 3.

Abstract

Senecavirus A (SVA) is an emerging picornavirus that has been associated with vesicular disease and neonatal mortality in swine. The construction of SVA virus carrying foreign reporter gene provides a powerful tool in virus research. However, it is often fraught with rescuing a recombinant picornavirus harboring a foreign gene or maintaining the stability of foreign gene in the virus genome. Here, we successfully generated recombinant SVA GD05/2017 viruses (V-GD05-clone) expressing the green fluorescent protein (iLOV), red fluorescent protein (RFP), or NanoLuc luciferase (Nluc). These recombinant viruses have comparable growth kinetics to the parental virus. Genetic stability analysis indicated that V-GD05-iLOV was highly stable in retaining iLOV gene for more than 10 passages, while V-GD05-RFP and V-GD05-Nluc lost the foreign genes in five passages. In addition, high-intensity fluorescent signals were found in the V-GD05-RFP- and V-GD05-iLOV-infected cells by fluorescence observation and flow cytometry analysis, and the luciferase activity assay could quantitatively monitor the replication of V-GD05-Nluc. In order to identify the porcine cell receptor for SVA, anthrax toxin receptor 1 (ANTXR1) was knocked out or overexpressed in the ST-R cells. The ANTXR1 knock-out cells lost the ability for SVA infection, while overexpression of ANTXR1 significantly increased the cell permissivity. These results confirmed that ANTXR1 was the receptor for SVA to invade porcine cells as reported in the human cells. Overall, this study suggests that these SVA reporter viruses will be useful tools in elucidating virus pathogenesis and developing control measures. KEY POINTS: • We successfully generated SVA viruses expressing the iLOV, RFP, or Nluc. • The iLOV was genetically stable in the V-GD05-iLOV genome over ten passages. • ANTXR1 was the receptor for SVA to invade porcine cells.

摘要

塞尼卡病毒 A(SVA)是一种新兴的小 RNA 病毒,与猪的水疱病和新生仔猪死亡有关。携带外源报告基因的 SVA 病毒的构建为病毒研究提供了强大的工具。然而,在拯救携带外源基因的重组小 RNA 病毒或维持病毒基因组中外源基因的稳定性方面,常常充满挑战。在这里,我们成功地构建了表达绿色荧光蛋白(iLOV)、红色荧光蛋白(RFP)或 NanoLuc 荧光素酶(Nluc)的重组 SVA GD05/2017 病毒(V-GD05-clone)。这些重组病毒的生长动力学与亲本病毒相当。遗传稳定性分析表明,V-GD05-iLOV 高度稳定地保留 iLOV 基因,超过 10 个传代,而 V-GD05-RFP 和 V-GD05-Nluc 在 5 个传代中丢失了外源基因。此外,通过荧光观察和流式细胞术分析,在 V-GD05-RFP-和 V-GD05-iLOV 感染的细胞中发现了高强度的荧光信号,并且可以通过荧光素酶活性测定定量监测 V-GD05-Nluc 的复制。为了鉴定 SVA 的猪细胞受体,在 ST-R 细胞中敲除或过表达炭疽毒素受体 1(ANTXR1)。ANTXR1 敲除细胞丧失了 SVA 感染的能力,而过表达 ANTXR1 则显著增加了细胞的允许性。这些结果证实,正如在人细胞中报道的那样,ANTXR1 是 SVA 入侵猪细胞的受体。总的来说,这项研究表明,这些 SVA 报告病毒将是阐明病毒发病机制和开发控制措施的有用工具。关键点:• 我们成功地生成了表达 iLOV、RFP 或 Nluc 的 SVA 病毒。• 在 V-GD05-iLOV 基因组中,iLOV 经过十多个传代后遗传稳定。• ANTXR1 是 SVA 入侵猪细胞的受体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eb0/7928201/e8e57e53b4d8/253_2021_11181_Fig1_HTML.jpg

相似文献

1
Infectious recombinant Senecavirus A expressing novel reporter proteins.
Appl Microbiol Biotechnol. 2021 Mar;105(6):2385-2397. doi: 10.1007/s00253-021-11181-6. Epub 2021 Mar 3.
2
Simultaneous expression of three reporter proteins from a porcine reproductive and respiratory syndrome virus-based vector.
J Virol Methods. 2023 Jun;316:114711. doi: 10.1016/j.jviromet.2023.114711. Epub 2023 Mar 13.
3
Construction and characterization of a full-length cDNA infectious clone of emerging porcine Senecavirus A.
Virology. 2016 Oct;497:111-124. doi: 10.1016/j.virol.2016.07.003. Epub 2016 Jul 25.
4
5
Rescue of NanoLuc luciferase-expressing Senecavirus A with oncolytic activity.
Virus Res. 2021 Jan 15;292:198232. doi: 10.1016/j.virusres.2020.198232. Epub 2020 Nov 15.
6
Infectious Recombinant Senecavirus A Expressing p16 Protein.
Int J Mol Sci. 2023 Mar 24;24(7):6139. doi: 10.3390/ijms24076139.
7
Development and characterization of a recombinant Senecavirus A expressing enhanced green fluorescent protein.
Front Microbiol. 2024 Sep 26;15:1443696. doi: 10.3389/fmicb.2024.1443696. eCollection 2024.
9
Construction and characterization of recombinant senecavirus A expressing secreted luciferase for antiviral screening.
J Virol Methods. 2024 Jun;327:114932. doi: 10.1016/j.jviromet.2024.114932. Epub 2024 Apr 4.

引用本文的文献

1
Using reverse genetics tool for study of Senecavirus A: pros and cons.
Front Vet Sci. 2025 Apr 2;12:1546709. doi: 10.3389/fvets.2025.1546709. eCollection 2025.
2
Development and characterization of a recombinant Senecavirus A expressing enhanced green fluorescent protein.
Front Microbiol. 2024 Sep 26;15:1443696. doi: 10.3389/fmicb.2024.1443696. eCollection 2024.
3
Red recombination enables a wide variety of markerless manipulation of porcine epidemic diarrhea virus genome to generate recombinant virus.
Front Cell Infect Microbiol. 2024 Jan 22;13:1338740. doi: 10.3389/fcimb.2023.1338740. eCollection 2023.
4
TEM8 in Oncogenesis: Protein Biology, Pre-Clinical Agents, and Clinical Rationale.
Cells. 2023 Nov 14;12(22):2623. doi: 10.3390/cells12222623.
5
Engineering Non-Human RNA Viruses for Cancer Therapy.
Vaccines (Basel). 2023 Oct 20;11(10):1617. doi: 10.3390/vaccines11101617.
6
Infectious Recombinant Senecavirus A Expressing p16 Protein.
Int J Mol Sci. 2023 Mar 24;24(7):6139. doi: 10.3390/ijms24076139.
7
Senecavirus A as an Oncolytic Virus: Prospects, Challenges and Development Directions.
Front Oncol. 2022 Mar 17;12:839536. doi: 10.3389/fonc.2022.839536. eCollection 2022.
8
Identification of a B-Cell Epitope in the VP3 Protein of Senecavirus A.
Viruses. 2021 Nov 18;13(11):2300. doi: 10.3390/v13112300.
9
10
A virulent and pathogenic infectious clone of Senecavirus A.
J Gen Virol. 2021 Aug;102(8). doi: 10.1099/jgv.0.001643.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验