Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Shanghai Med-X Engineering Research Center, Shanghai Jiao Tong University, Shanghai, China.
Catheter Cardiovasc Interv. 2021 May 1;97 Suppl 2:1040-1047. doi: 10.1002/ccd.29592. Epub 2021 Mar 4.
We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis.
Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions.
An artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step-down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law-based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire-derived FFR ≤0.80.
The μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel-level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra- and inter-observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s.
Computation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory.
旨在评估在中度冠状动脉狭窄患者中单支血管造影视图计算血流分数储备(FFR)的诊断准确性。
单支血管造影视图计算定量血流比(QFR)可能会增加计算 FFR 的常规应用的可行性。此外,目前的 QFR 解决方案假设参考血管直径呈线性渐缩,这可能会降低在存在具有生理意义的分叉病变时的诊断准确性。
提出了一种人工智能算法,用于自动描绘主要心外膜冠状动脉及其分支的管腔轮廓。基于 Murray 分叉分形律重建了一个递减参考直径函数,并用于 QFR 计算。在 FAVOR II China 研究人群中对这种基于 Murray 定律的 QFR(μQFR)进行了验证。μQFR 分别在两个造影投影中进行计算,从具有最佳造影图像质量的投影开始。血流动力学意义上的冠状动脉狭窄定义为压力导丝测量的 FFR≤0.80。
成功计算了 306 例患者的 330 支血管的μQFR。μQFR 与 FFR 之间具有极好的相关性(r=0.90,p<0.001)和一致性(平均差值=0.00±0.05,p=0.378)。μQFR 用于识别血流动力学意义上的狭窄的血管水平诊断准确性为 93.0%(95%CI:90.3 至 95.8%),其敏感性、特异性、阳性预测值、阴性预测值、阳性似然比和阴性似然比分别为 87.5%(95%CI:80.2 至 92.8%)、96.2%(95%CI:92.6 至 98.3%)、92.9%(95%CI:86.5 至 96.9%)、93.1%(95%CI:88.9 至 96.1%)、23.0(95%CI:11.6 至 45.5)、0.13(95%CI:0.08 至 0.20)。使用次优造影图像视图会略微降低μQFR 的诊断准确性(AUC=0.97 对 0.92,差异=0.05,p<0.001)。μQFR 计算的组内和组间变异性分别为 0.00±0.03 和 0.00±0.03。μQFR 的平均分析时间为 67±22 秒。
从单支血管造影视图计算 μQFR 具有很高的可行性和识别血流动力学意义上的冠状动脉狭窄的出色诊断准确性。μQFR 的短分析时间和良好的可重复性具有在导管室中更广泛应用生理评估的潜力。