i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China.
Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
J Am Chem Soc. 2021 Mar 17;143(10):4017-4023. doi: 10.1021/jacs.1c00666. Epub 2021 Mar 5.
Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal-organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (<19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1-20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.
能够实现大变形的电活性软致动器功能强大,在多个领域具有广泛的应用。然而,设计能够承受高应变、提供大致动位移并表现出稳定的可恢复性的软致动器仍然是其实际应用的主要挑战。在这里,我们首次报道了一种二维(2D)导电金属有机骨架(MOF)基电化学致动器,它由通过使用简便的一步水热生长法垂直定向和分层的 Ni-CAT NWAs/CNF 电极组成。本研究中制备的软致动器在致动性能方面得到了改善,这得益于其固有有序的多孔结构和用于快速离子和电子传输的有效传输途径;此外,这种致动器促进了相当高的扩散速率和低界面电阻。特别是,该致动器在 3 V DC 输入时表现出快速响应(<19 s),在±3 V 的方波交流电压下具有 12.1mm 的大致动位移和相应的 0.36%的高应变量。具体而言,该致动器在空气中具有宽频带频率响应(0.1-20 Hz)和长循环寿命(10000 次循环),致动性能几乎没有退化。我们的工作为仿生人工致动器提供了新的机会,并克服了软机器人和仿生学中电极材料的当前限制。