Zhao Cui-E, Wang Shuaikang, Chen Shaoqiang, Han Bin, Wan Shouhao, Bai Qijia, Hu Mingao, Kang Fangyuan, Liu Ruiqing, Li Jiahui, Ma Yanwen, Zhang Qichun
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing Jiangsu 210023 China.
Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
Chem Sci. 2025 Apr 15. doi: 10.1039/d5sc01584g.
Two-dimensional (2D) conductive metal-organic frameworks (c-MOFs) with intrinsic electrical conductivity and framework structure have been considered promising electrode materials for flexible and transparent energy storage devices. However, balancing electrochemical properties and optical transmittance remains challenging. To address this issue, a strategy of dual-metal-sites 2D c-MOFs is proposed to expand 2D Cu-MOF to nanorod-combined 2D CuNi-HHTP (HHTP = 2, 3, 6, 7, 10, 11-hexahydroxy-triphenylene) with improved ion and charge transport to redox species for Faraday reactions in micro-supercapacitors. Density functional theory calculations reveal that the incorporation of Ni can optimize the insertion of pseudocapacitive cations (K) on dual-metal sites, significantly enhancing electron transfer during the charge-storage process. Furthermore, a facile laser-scribing technique is adopted for the fabrication of the interdigital architecture, serving as a transparent platform with exceptional optoelectronic properties. As a result, the CuNi-HHTP MSC exhibits high optical transmittance (over 80%), ultrahigh areal capacitance (28.94 mF cm), high energy density (1.45 μW cm), high power density (61.38 mW cm) and decent cycle stability (over 5000 cycles). This work offers a means of rationally designing 2D c-MOFs for the advancement of flexible transparent portable electronics.
具有本征导电性和框架结构的二维(2D)导电金属有机框架(c-MOFs)被认为是用于柔性透明储能器件的有前景的电极材料。然而,平衡电化学性能和光学透过率仍然具有挑战性。为了解决这个问题,提出了一种双金属位点二维c-MOFs的策略,将二维Cu-MOF扩展为纳米棒组合的二维CuNi-HHTP(HHTP = 2, 3, 6, 7, 10, 11-六羟基三亚苯),改善了离子和电荷向氧化还原物种的传输,用于微型超级电容器中的法拉第反应。密度泛函理论计算表明,Ni的掺入可以优化赝电容阳离子(K)在双金属位点上的插入,显著增强电荷存储过程中的电子转移。此外,采用一种简便的激光划刻技术来制造叉指结构,作为具有优异光电性能的透明平台。结果,CuNi-HHTP微型超级电容器表现出高光学透过率(超过80%)、超高面积电容(28.94 mF/cm²)、高能量密度(1.45 μW/cm²)、高功率密度(61.38 mW/cm²)和良好的循环稳定性(超过5000次循环)。这项工作为合理设计二维c-MOFs以推动柔性透明便携式电子产品的发展提供了一种方法。