Suppr超能文献

生理决定生物地理学:代谢抑制对耐热性的重要性。

Physiological determinants of biogeography: The importance of metabolic depression to heat tolerance.

机构信息

The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China.

Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.

出版信息

Glob Chang Biol. 2021 Jun;27(11):2561-2579. doi: 10.1111/gcb.15578. Epub 2021 Mar 17.

Abstract

A quantitative understanding of physiological thermal responses is vital for forecasting species distributional shifts in response to climate change. Many studies have focused on metabolic rate as a global metric for analyzing the sublethal effects of changing environments on physiology. Thermal performance curves (TPCs) have been suggested as a viable analytical framework, but standard TPCs may not fully capture physiological responses, due in part to failure to consider the process of metabolic depression. We derived a model based on the nonlinear regression of biological temperature-dependent rate processes and built a heart rate data set for 26 species of intertidal molluscs distributed from 33°S to ~40°N. We then calculated physiological thermal performance limits with continuous heating using , the temperature at which heart rate is decreased to 50% of the maximal rate, as a more realistic measure of upper thermal limits. Results indicate that heat-induced metabolic depression of cardiac performance is a common adaptive response that allows tolerance of harsh environments. Furthermore, our model accounted for the high inter-individual variability in the shape of cardiac TPCs. We then used these TPCs to calculate physiological thermal safety margins (pTSM), the difference between the maximal operative temperature (95th percentile of field temperatures) and of each individual. Using pTSMs, we developed a physiological species distribution model (pSDM) to forecast future geographic distributions. pSDM results indicate that climate-induced species range shifts are potentially less severe than predicted by a simple correlative SDM. Species with metabolic depression below the optimum temperature will be more thermal resistant at their warm trailing edges. High intraspecific variability further suggests that models based on species-level vulnerability to environmental change may be problematic. This multi-scale, mechanistic understanding that incorporates metabolic depression and inter-individual variability in thermal response enables better predictions about the relationship between thermal stress and species distributions.

摘要

定量理解生理热响应对于预测物种分布对气候变化的响应至关重要。许多研究都集中在代谢率上,将其作为分析环境变化对生理的亚致死影响的全球指标。热性能曲线(TPC)已被提议作为一种可行的分析框架,但标准 TPC 可能无法完全捕捉生理响应,部分原因是未能考虑代谢抑制的过程。我们基于生物温度依赖率过程的非线性回归推导了一个模型,并为分布在 33°S 到~40°N 之间的 26 种潮间带软体动物构建了一个心率数据集。然后,我们使用 (心率降低到最大速率的 50%时的温度)作为更现实的上限热限制测量值,通过连续加热计算生理热性能极限。结果表明,心脏性能的热诱导代谢抑制是一种常见的适应反应,允许耐受恶劣环境。此外,我们的模型解释了心脏 TPC 形状的高个体间变异性。然后,我们使用这些 TPC 计算生理热安全裕度(pTSM),即最大操作温度(野外温度的 95%百分位数)与每个个体的 之间的差异。使用 pTSM,我们开发了生理物种分布模型(pSDM)来预测未来的地理分布。pSDM 结果表明,气候引起的物种范围转移可能比简单的相关 SDM 预测的要小。在最佳温度以下具有代谢抑制的物种在其温暖的尾部边缘将具有更高的耐热性。高个体内变异性进一步表明,基于物种对环境变化脆弱性的模型可能存在问题。这种多尺度、机制性的理解,将代谢抑制和热响应的个体间变异性结合起来,可以更好地预测热应激与物种分布之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验