Uxa Daniel, Holmes Helen J, Meyer Kevin, Dörrer Lars, Schmidt Harald
Technische Universität Clausthal, Institut für Metallurgie, AG Festkörperkinetik, Clausthal-Zellerfeld, Germany.
Technische Universität Clausthal, Institut für Energieforschung und Physikalische Technologien, AG Energiewandlung, Clausthal-Zellerfeld, Germany.
Phys Chem Chem Phys. 2021 Mar 18;23(10):5992-5998. doi: 10.1039/d0cp05593j.
The LiNi0.33Mn0.33Co0.33O2 compound is one of the most interesting cathode materials for Li-ion batteries. Li diffusion in this material directly influences charging/discharging times (and consequently power densities), maximum capacities, stress formation and possible side reactions. In the present study Li tracer self-diffusion is investigated in polycrystalline sintered bulk samples with an average grain size of about 50 nm in the temperature range between 110 and 350 °C. For analysis, stable 6Li tracers are used in combination with Secondary Ion Mass Spectrometry (SIMS). The diffusivities can be described by the Arrhenius law with an activation enthalpy of (0.85 ± 0.03) eV, which is interpreted as the migration energy of a single Li vacancy. Lithium diffuses via structural vacancies whose concentration is fixed by a Li deficiency of about 10%. An extrapolation of the diffusivities to room temperature gives significantly lower values than the diffusivities obtained by electrochemical measurements in literature.
LiNi0.33Mn0.33Co0.33O2化合物是锂离子电池中最具吸引力的阴极材料之一。锂在这种材料中的扩散直接影响充电/放电时间(进而影响功率密度)、最大容量、应力形成以及可能的副反应。在本研究中,对平均晶粒尺寸约为50纳米的多晶烧结块状样品在110至350°C的温度范围内进行了锂示踪剂自扩散研究。为了进行分析,使用稳定的6Li示踪剂与二次离子质谱(SIMS)相结合。扩散率可以用阿仑尼乌斯定律描述,活化焓为(0.85±0.03)eV,这被解释为单个锂空位的迁移能量。锂通过结构空位扩散,其浓度由约10%的锂缺陷固定。将扩散率外推到室温得到的值明显低于文献中通过电化学测量获得的扩散率。