Büttner Pascal, Scheler Florian, Pointer Craig, Döhler Dirk, Yokosawa Tadahiro, Spiecker Erdmann, Boix Pablo P, Young Elizabeth R, Mínguez-Bacho Ignacio, Bachmann Julien
Friedrich-Alexander University Erlangen-Nürnberg, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Cauerstraße 3, 91058 Erlangen, Germany.
Universidad de Valencia, Instituto de Ciencia de Materiales, Catedrático J. Beltrán 2, 46980 Paterna, Spain.
ACS Appl Mater Interfaces. 2021 Mar 17;13(10):11861-11868. doi: 10.1021/acsami.0c21365. Epub 2021 Mar 5.
Antimony chalcogenides represent a family of materials of low toxicity and relative abundance, with a high potential for future sustainable solar energy conversion technology. However, solar cells based on antimony chalcogenides present open-circuit voltage losses that limit their efficiencies. These losses are attributed to several recombination mechanisms, with interfacial recombination being considered as one of the dominant processes. In this work, we exploit atomic layer deposition (ALD) to grow a series of ultrathin ZnS interfacial layers at the TiO/SbS interface to mitigate interfacial recombination and to increase the carrier lifetime. ALD allows for very accurate control over the ZnS interlayer thickness on the ångström scale (0-1.5 nm) and to deposit highly pure SbS. Our systematic study of the photovoltaic and optoelectronic properties of these devices by impedance spectroscopy and transient absorption concludes that the optimum ZnS interlayer thickness of 1.0 nm achieves the best balance between the beneficial effect of an increased recombination resistance at the interface and the deleterious barrier behavior of the wide-bandgap semiconductor ZnS. This optimization allows us to reach an overall power conversion efficiency of 5.09% in planar configuration.
硫族锑化物是一类低毒性且相对丰富的材料,在未来可持续太阳能转换技术方面具有很高的潜力。然而,基于硫族锑化物的太阳能电池存在开路电压损失,这限制了它们的效率。这些损失归因于几种复合机制,其中界面复合被认为是主要过程之一。在这项工作中,我们利用原子层沉积(ALD)在TiO/SbS界面生长一系列超薄ZnS界面层,以减轻界面复合并增加载流子寿命。ALD能够在埃尺度(0-1.5纳米)上非常精确地控制ZnS中间层的厚度,并沉积高纯度的SbS。我们通过阻抗谱和瞬态吸收对这些器件的光伏和光电特性进行的系统研究得出结论,1.0纳米的最佳ZnS中间层厚度在界面处复合电阻增加的有益效果与宽带隙半导体ZnS的有害势垒行为之间实现了最佳平衡。这种优化使我们在平面结构中达到了5.09%的整体功率转换效率。