Laboratoire de Biologie Structurale de la Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP Paris, 91128 Palaiseau CEDEX, France.
IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l'Adour, Hélioparc, 64053 Pau, France.
Int J Mol Sci. 2021 Feb 24;22(5):2241. doi: 10.3390/ijms22052241.
Methylselenol (MeSeH) has been suggested to be a critical metabolite for anticancer activity of selenium, although the mechanisms underlying its activity remain to be fully established. The aim of this study was to identify metabolic pathways of MeSeH in to decipher the mechanism of its toxicity. We first investigated in vitro the formation of MeSeH from methylseleninic acid (MSeA) or dimethyldiselenide. Determination of the equilibrium and rate constants of the reactions between glutathione (GSH) and these MeSeH precursors indicates that in the conditions that prevail in vivo, GSH can reduce the major part of MSeA or dimethyldiselenide into MeSeH. MeSeH can also be enzymatically produced by glutathione reductase or thioredoxin/thioredoxin reductase. Studies on the toxicity of MeSeH precursors (MSeA, dimethyldiselenide or a mixture of MSeA and GSH) in revealed that cytotoxicity and selenomethionine content were severely reduced in a mutant devoid of O-acetylhomoserine sulfhydrylase. This suggests conversion of MeSeH into selenomethionine by this enzyme. Protein aggregation was observed in wild-type but not in cells. Altogether, our findings support the view that MeSeH is toxic in because it is metabolized into selenomethionine which, in turn, induces toxic protein aggregation.
甲基硒氢(MeSeH)被认为是硒抗癌活性的关键代谢物,尽管其活性的机制仍有待完全确定。本研究旨在鉴定 MeSeH 在 中的代谢途径,以阐明其毒性的机制。我们首先研究了体外从甲基硒酸(MSeA)或二甲基二硒化物形成 MeSeH 的情况。测定谷胱甘肽(GSH)与这些 MeSeH 前体之间反应的平衡和速率常数表明,在体内普遍存在的条件下,GSH 可以将大部分 MSeA 或二甲基二硒化物还原为 MeSeH。谷胱甘肽还原酶或硫氧还蛋白/硫氧还蛋白还原酶也可以酶促产生 MeSeH。MeSeH 前体(MSeA、二甲基二硒化物或 MSeA 和 GSH 的混合物)在 中的毒性研究表明,缺乏 O-乙酰高丝氨酸硫酯酶的 突变体中细胞毒性和硒蛋氨酸含量严重降低。这表明该酶将 MeSeH 转化为硒蛋氨酸。在野生型细胞中观察到蛋白质聚集,但在 细胞中没有观察到。总之,我们的发现支持这样一种观点,即 MeSeH 在 中是有毒的,因为它被代谢成硒蛋氨酸,而硒蛋氨酸又会诱导有毒的蛋白质聚集。