Suppr超能文献

CO激光单线扫描聚酰亚胺引起的电阻降低

Electrical Resistance Reduction Induced with CO Laser Single Line Scan of Polyimide.

作者信息

Wang Zhongke, Tan Kok Keat, Lam Yee Cheong

机构信息

SIMTech-NTU Joint Laboratory (Precision Machining), Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Singapore Institute of Manufacturing Technology (SIMTech), A*STAR, 2 Fusionopolis Way, Singapore 138634, Singapore.

出版信息

Micromachines (Basel). 2021 Feb 24;12(3):227. doi: 10.3390/mi12030227.

Abstract

We conducted a laser parameter study on CO laser induced electrical conductivity on a polyimide film. The induced electrical conductivity was found to occur dominantly at the center of the scanning line instead of uniformly across the whole line width. MicroRaman examination revealed that the conductivity was mainly a result of the multi-layers (4-5) of graphene structure induced at the laser irradiation line center. The graphene morphology at the line center appeared as thin wall porous structures together with nano level fiber structures. With sufficient energy dose per unit length and laser power, this surface modification for electrical conductivity was independent of laser pulse frequency but was instead determined by the average laser power. High electrical conductivity could be achieved by a single scan of laser beam at a sufficiently high-power level. To achieve high conductivity, it was not efficient nor effective to utilize a laser at low power but compensating it with a slower scanning speed or having multiple scans. The electrical resistance over a 10 mm scanned length decreased significantly from a few hundred Ohms to 30 Ohms when energy dose per unit length increased from 0.16 J/mm to 1.0 J/mm, i.e., the laser power increased from 5.0 W to 24 W with corresponding power density of 3.44 × 10 W/cm to 16.54 W/cm respectively at a speed of 12.5 mm/s for a single pass scan. In contrast, power below 5 W at speeds exceeding 22.5 mm/s resulted in a non-conductive open loop.

摘要

我们对聚酰亚胺薄膜上的CO激光诱导电导率进行了激光参数研究。结果发现,诱导电导率主要发生在扫描线的中心,而不是均匀地分布在整个线宽上。显微拉曼检测表明,电导率主要是由激光辐照线中心诱导产生的多层(4 - 5层)石墨烯结构所致。线中心的石墨烯形态呈现为薄壁多孔结构以及纳米级纤维结构。在每单位长度具有足够能量剂量和激光功率的情况下,这种用于电导率的表面改性与激光脉冲频率无关,而是由平均激光功率决定。通过以足够高的功率水平单次扫描激光束即可实现高电导率。为了实现高电导率,使用低功率激光但通过较慢的扫描速度或多次扫描来补偿是低效且无效的。当每单位长度的能量剂量从0.16 J/mm增加到1.0 J/mm时,即激光功率从5.0 W增加到24 W,相应的功率密度从3.44×10 W/cm增加到16.54 W/cm,扫描速度为12.5 mm/s进行单次扫描时,10 mm扫描长度上的电阻从几百欧姆显著降低到30欧姆。相比之下,速度超过22.5 mm/s时功率低于5 W会导致非导电开环。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dd3/7996134/0a2d801a68f6/micromachines-12-00227-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验