Birck Nanotechnology Center and School of Electrical and Computer Engineering, Purdue University , West Lafayette, Indiana 47907, United States.
ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4463-70. doi: 10.1021/am509087u. Epub 2015 Feb 20.
In this paper, we present a simple and low-cost technique for fabricating highly stretchable (up to 100% strain) and sensitive (gauge factor of up to 20 000) strain sensors. Our technique is based on transfer and embedment of carbonized patterns created through selective laser pyrolization of thermoset polymers, such as polyimide, into elastomeric substrates (e.g., PDMS or Ecoflex). Embedded carbonized materials are composed of partially aligned graphene and carbon nanotube (CNT) particles and show a sharp directional anisotropy, which enables the fabrication of extremely robust, highly stretchable, and unidirectional strain sensors. Raman spectrum of pyrolized carbon regions reveal that under optimal laser settings, one can obtain highly porous carbon nano/microparticles with sheet resistances as low as 60 Ω/□. Using this technique, we fabricate an instrumented latex glove capable of measuring finger motion in real-time.
在本文中,我们提出了一种简单且低成本的技术,用于制造高拉伸(可达 100%应变)和高灵敏(应变系数高达 20000)的应变传感器。我们的技术基于将通过对热固性聚合物(如聚酰亚胺)进行选择性激光热解而产生的碳化图案转移和嵌入到弹性体基底(例如 PDMS 或 Ecoflex)中。嵌入的碳化材料由部分对齐的石墨烯和碳纳米管(CNT)颗粒组成,并表现出明显的各向异性,这使得制造极其坚固、高拉伸和各向异性的应变传感器成为可能。热解碳区域的拉曼光谱表明,在最佳的激光设置下,可以获得具有低至 60 Ω/□的片电阻的高多孔碳纳米/微米颗粒。使用该技术,我们制造了一种可实时测量手指运动的仪器化乳胶手套。