Suppr超能文献

使用流行病学风险评估模型和多基因风险评分预测胃癌风险

Gastric Cancer Risk Prediction Using an Epidemiological Risk Assessment Model and Polygenic Risk Score.

作者信息

Park Boyoung, Yang Sarah, Lee Jeonghee, Choi Il Ju, Kim Young-Il, Kim Jeongseon

机构信息

Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea.

Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea.

出版信息

Cancers (Basel). 2021 Feb 19;13(4):876. doi: 10.3390/cancers13040876.

Abstract

We investigated the performance of a gastric cancer (GC) risk assessment model in combination with single-nucleotide polymorphisms (SNPs) as a polygenic risk score (PRS) in consideration of ( infection status. Six SNPs identified from genome-wide association studies and a marginal association with GC in the study population were included in the PRS. Discrimination of the GC risk assessment model, PRS, and the combination of the two (PRS-GCS) were examined regarding incremental risk and the area under the receiver operating characteristic curve (AUC), with grouping according to infection status. The GC risk assessment model score showed an association with GC, irrespective of infection. Conversely, the PRS exhibited an association only for those with infection. The PRS did not discriminate GC in those without infection, whereas the GC risk assessment model showed a modest discrimination. Among individuals with infection, discrimination by the GC risk assessment model and the PRS were comparable, with the PRS-GCS combination resulting in an increase in the AUC of 3%. In addition, the PRS-GCS classified more patients and fewer controls at the highest score quintile in those with infection. Overall, the PRS-GCS improved the identification of a GC-susceptible population of people with infection. In those without infection, the GC risk assessment model was better at identifying the high-risk group.

摘要

我们研究了一种胃癌(GC)风险评估模型与单核苷酸多态性(SNP)相结合作为多基因风险评分(PRS)的性能,并考虑了(感染状况)。从全基因组关联研究中鉴定出的六个SNP以及在研究人群中与GC的边缘关联被纳入PRS。根据感染状况进行分组,就增量风险和受试者工作特征曲线下面积(AUC)而言,对GC风险评估模型、PRS以及两者的组合(PRS-GCS)的辨别能力进行了检验。无论是否感染,GC风险评估模型评分均与GC存在关联。相反,PRS仅对感染的个体表现出关联。对于未感染的个体,PRS无法辨别GC,而GC风险评估模型显示出适度的辨别能力。在感染的个体中,GC风险评估模型和PRS的辨别能力相当,PRS-GCS组合使AUC增加了3%。此外,在感染的个体中,PRS-GCS在最高评分五分位数时将更多患者和更少对照进行了分类。总体而言,PRS-GCS改善了对感染个体中GC易感人群的识别。在未感染的个体中,GC风险评估模型在识别高危组方面表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/309a/7923020/994e2634ddb0/cancers-13-00876-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验