Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea.
Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.
Int J Mol Sci. 2021 Feb 19;22(4):2078. doi: 10.3390/ijms22042078.
The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin-proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.
内质网(ER)是一种相互连接的细胞器,在生物合成、折叠、稳定、成熟和跨膜蛋白的运输中发挥着基本作用。它是最大的细胞器,对几乎所有生命方面都有至关重要的调节作用。因此,在内质网中,大量的资源,包括伴侣蛋白和蛋白折叠促进剂,都致力于蛋白质的充分成熟和最终目的地的输送。不幸的是,蛋白质的折叠和组装可能非常容易出错,这导致了错误折叠的蛋白质的产生。值得注意的是,蛋白质的动态平衡,称为蛋白质稳态,经常受到错误折叠的蛋白质和随后的蛋白质聚集体的流动的威胁。为了维持蛋白质稳态,内质网通过将底物递送至泛素蛋白酶体系统(UPS)或溶酶体,分别将终末错误折叠的蛋白质分拣和消除,即内质网相关降解(ERAD)或内质网自噬。ERAD 通过蛋白质质量控制不仅消除了错误折叠或未组装的蛋白质,而且通过蛋白质数量控制精细调节正确折叠的蛋白质。有趣的是,E3 泛素连接酶的多样性和独特性决定了 ERAD 过程中泛素化的效率、复杂性和特异性。内质网自噬利用核心自噬机制并消除 ERAD 抗性错误折叠的蛋白质。在这里,我们不仅概述了泛素化机制,还概述了 E3 泛素连接酶的催化机制。此外,我们讨论了参与内质网两种保护途径(ERAD 和内质网自噬)的 E3 泛素连接酶的机制见解。最后,我们提供了 ERAD 和内质网自噬不仅进行蛋白质质量控制而且进行蛋白质数量控制以确保蛋白质稳态和随后的生物体稳态的分子机制。