Suppr超能文献

微生物电化学系统:原理、构建与生物传感应用。

Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications.

机构信息

Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.

National Research Centre (NRC), Applied Organic Chemistry Department, El Bohouth st., Dokki, Giza 12622, Egypt.

出版信息

Sensors (Basel). 2021 Feb 11;21(4):1279. doi: 10.3390/s21041279.

Abstract

Microbial electrochemical systems are a fast emerging technology that use microorganisms to harvest the chemical energy from bioorganic materials to produce electrical power. Due to their flexibility and the wide variety of materials that can be used as a source, these devices show promise for applications in many fields including energy, environment and sensing. Microbial electrochemical systems rely on the integration of microbial cells, bioelectrochemistry, material science and electrochemical technologies to achieve effective conversion of the chemical energy stored in organic materials into electrical power. Therefore, the interaction between microorganisms and electrodes and their operation at physiological important potentials are critical for their development. This article provides an overview of the principles and applications of microbial electrochemical systems, their development status and potential for implementation in the biosensing field. It also provides a discussion of the recent developments in the selection of electrode materials to improve electron transfer using nanomaterials along with challenges for achieving practical implementation, and examples of applications in the biosensing field.

摘要

微生物电化学系统是一种快速发展的技术,它利用微生物从生物有机材料中获取化学能,以产生电能。由于其灵活性和可以用作源的多种材料,这些设备在能源、环境和传感等许多领域的应用中显示出了前景。微生物电化学系统依赖于微生物细胞、生物电化学、材料科学和电化学技术的集成,以实现对有机材料中储存的化学能向电能的有效转化。因此,微生物与电极之间的相互作用及其在生理重要电位下的运行对于其发展至关重要。本文概述了微生物电化学系统的原理和应用、其发展现状以及在生物传感领域的应用潜力。本文还讨论了为了利用纳米材料提高电子转移而选择电极材料的最新进展,以及实现实际应用所面临的挑战,以及在生物传感领域的应用实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ff9/7916843/f10c6c2170e9/sensors-21-01279-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验