Suppr超能文献

基于帕累托优化的近似最优图信号采样

Near-Optimal Graph Signal Sampling by Pareto Optimization.

作者信息

Luo Dongqi, Si Binqiang, Zhang Saite, Yu Fan, Zhu Jihong

机构信息

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China.

出版信息

Sensors (Basel). 2021 Feb 18;21(4):1415. doi: 10.3390/s21041415.

Abstract

In this paper, we focus on the bandlimited graph signal sampling problem. To sample graph signals, we need to find small-sized subset of nodes with the minimal optimal reconstruction error. We formulate this problem as a subset selection problem, and propose an efficient Pareto Optimization for Graph Signal Sampling (POGSS) algorithm. Since the evaluation of the objective function is very time-consuming, a novel acceleration algorithm is proposed in this paper as well, which accelerates the evaluation of any solution. Theoretical analysis shows that POGSS finds the desired solution in quadratic time while guaranteeing nearly the best known approximation bound. Empirical studies on both Erdos-Renyi graphs and Gaussian graphs demonstrate that our method outperforms the state-of-the-art greedy algorithms.

摘要

在本文中,我们聚焦于带限图信号采样问题。为了对图信号进行采样,我们需要找到具有最小最优重构误差的小规模节点子集。我们将此问题表述为一个子集选择问题,并提出了一种用于图信号采样的高效帕累托优化(POGSS)算法。由于目标函数的评估非常耗时,本文还提出了一种新颖的加速算法,该算法可加速对任何解的评估。理论分析表明,POGSS在二次时间内找到所需解,同时保证接近已知的最佳近似界。对厄多斯 - 雷尼图和高斯图的实证研究表明,我们的方法优于当前最先进的贪心算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f1/7922865/30cde82661ef/sensors-21-01415-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验