Suppr超能文献

基于浸入边界-格子玻尔兹曼方法的数值模拟及驻波表面声波作用下粒子操控的实验研究

Numerical Modeling Using Immersed Boundary-Lattice Boltzmann Method and Experiments for Particle Manipulation under Standing Surface Acoustic Waves.

作者信息

Alshehhi Fatima, Waheed Waqas, Al-Ali Abdulla, Abu-Nada Eiyad, Alazzam Anas

机构信息

Mechanical Engineering Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates.

System on Chip Lab, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates.

出版信息

Micromachines (Basel). 2023 Jan 31;14(2):366. doi: 10.3390/mi14020366.

Abstract

In this work, we employed the Immersed Boundary-Lattice Boltzmann Method (IB-LBM) to simulate the motion of a microparticle in a microchannel under the influence of a standing surface acoustic wave (SSAW). To capture the response of the target microparticle in a straight channel under the effect of the SSAW, in-house code was built in C language. The SSAW creates pressure nodes and anti-nodes inside the microchannel. Here, the target particle was forced to traverse toward the pressure node. A mapping mechanism was developed to accurately apply the physical acoustic force field in the numerical simulation. First, benchmarking studies were conducted to compare the numerical results in the IB-LBM with the available analytical, numerical, and experimental results. Next, several parametric studies were carried out in which the particle types, sizes, compressibility coefficients, and densities were varied. When the SSAW is applied, the microparticles (with a positive acoustic contrast factor) move toward the pressure node locations during their motion in the microchannel. Hence, their steady-state locations are controlled by adjusting the pressure nodes to the desired locations, such as the centerline or near the microchannel sidewalls. Moreover, the geometric parameters, such as radius, density, and compressibility of the particles affect their transient response, and the particles ultimately settle at the pressure nodes. To validate the numerical work, a microfluidic device was fabricated in-house in the cleanroom using lithographic techniques. Experiments were performed, and the target particle was moved either to the centerline or sidewalls of the channel, depending on the location of the pressure node. The steady-state placements obtained in the computational model and experiments exhibit excellent agreement and are reported.

摘要

在这项工作中,我们采用沉浸边界-格子玻尔兹曼方法(IB-LBM)来模拟微通道中微粒在驻表面声波(SSAW)影响下的运动。为了捕捉目标微粒在直通道中受SSAW作用时的响应,我们用C语言编写了内部代码。SSAW在微通道内产生压力节点和反节点。在此,目标粒子被迫朝着压力节点移动。我们开发了一种映射机制,以便在数值模拟中准确应用物理声学力场。首先,进行了基准研究,将IB-LBM中的数值结果与现有的解析、数值和实验结果进行比较。接下来,进行了几项参数研究,其中改变了粒子类型、尺寸、压缩系数和密度。当施加SSAW时,微粒子(具有正声对比度因子)在微通道中运动时朝着压力节点位置移动。因此,通过将压力节点调整到所需位置,如中心线或微通道侧壁附近,可以控制它们的稳态位置。此外,粒子的几何参数,如半径、密度和压缩性,会影响它们的瞬态响应,并且粒子最终会在压力节点处沉降。为了验证数值工作,我们在洁净室中使用光刻技术自行制造了一个微流体装置。进行了实验,目标粒子根据压力节点的位置移动到通道的中心线或侧壁。计算模型和实验中获得并报告的稳态位置表现出极好的一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c44/9963542/6119e945f836/micromachines-14-00366-g001.jpg

相似文献

2
Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
Ultrasonics. 2021 Dec;117:106547. doi: 10.1016/j.ultras.2021.106547. Epub 2021 Aug 6.
3
Radiation dominated acoustophoresis driven by surface acoustic waves.
J Colloid Interface Sci. 2015 Oct 1;455:203-11. doi: 10.1016/j.jcis.2015.05.011. Epub 2015 Jun 3.
5
Experimental and numerical studies on standing surface acoustic wave microfluidics.
Lab Chip. 2016 Feb 7;16(3):515-24. doi: 10.1039/c5lc00707k.
6
Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
Lab Chip. 2009 Dec 7;9(23):3354-9. doi: 10.1039/b915113c. Epub 2009 Oct 12.
7
10
Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).
Lab Chip. 2011 Jul 21;11(14):2319-24. doi: 10.1039/c1lc20042a. Epub 2011 Jun 27.

引用本文的文献

1
Analysis of Acousto-Optic Phenomenon in SAW Acoustofluidic Chip and Its Application in Light Refocusing.
Micromachines (Basel). 2023 Apr 26;14(5):943. doi: 10.3390/mi14050943.

本文引用的文献

1
A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles.
J Chromatogr A. 2022 Aug 2;1676:463268. doi: 10.1016/j.chroma.2022.463268. Epub 2022 Jun 21.
3
Particle separation in microfluidics using different modal ultrasonic standing waves.
Ultrason Sonochem. 2021 Jul;75:105603. doi: 10.1016/j.ultsonch.2021.105603. Epub 2021 May 21.
5
Application of microfluidic technology in food processing.
Food Funct. 2020 Jul 22;11(7):5726-5737. doi: 10.1039/d0fo01278e.
6
Dissipative particle dynamics for modeling micro-objects in microfluidics: application to dielectrophoresis.
Biomech Model Mechanobiol. 2020 Feb;19(1):389-400. doi: 10.1007/s10237-019-01216-3. Epub 2019 Aug 31.
9
Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices.
Micromachines (Basel). 2019 Jan 13;10(1):52. doi: 10.3390/mi10010052.
10
Continuous-Flow Cell Dipping and Medium Exchange in a Microdevice using Dielectrophoresis.
Micromachines (Basel). 2018 May 8;9(5):223. doi: 10.3390/mi9050223.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验