Suppr超能文献

利用光流的深度学习进行视觉里程计。

Leveraging Deep Learning for Visual Odometry Using Optical Flow.

机构信息

Intel Research & Development, W23 CX68 Leixlip, Ireland.

出版信息

Sensors (Basel). 2021 Feb 12;21(4):1313. doi: 10.3390/s21041313.

Abstract

In this paper, we study deep learning approaches for monocular visual odometry (VO). Deep learning solutions have shown to be effective in VO applications, replacing the need for highly engineered steps, such as feature extraction and outlier rejection in a traditional pipeline. We propose a new architecture combining ego-motion estimation and sequence-based learning using deep neural networks. We estimate camera motion from optical flow using Convolutional Neural Networks (CNNs) and model the motion dynamics using Recurrent Neural Networks (RNNs). The network outputs the relative 6-DOF camera poses for a sequence, and implicitly learns the absolute scale without the need for camera intrinsics. The entire trajectory is then integrated without any post-calibration. We evaluate the proposed method on the KITTI dataset and compare it with traditional and other deep learning approaches in the literature.

摘要

本文研究了基于单目视觉的里程计(VO)的深度学习方法。深度学习解决方案在 VO 应用中已被证明是有效的,它取代了传统流水线中高度工程化的步骤,例如特征提取和异常值剔除。我们提出了一种新的架构,结合了基于自身运动估计和基于序列的学习,使用深度神经网络。我们使用卷积神经网络(CNNs)从光流中估计相机运动,并使用递归神经网络(RNNs)来模拟运动动态。网络为序列输出相对的 6-DoF 相机位姿,并在无需相机内参的情况下隐式学习绝对尺度。然后无需任何后校准就可以整合整个轨迹。我们在 KITTI 数据集上评估了所提出的方法,并将其与传统方法和文献中的其他深度学习方法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验