Suppr超能文献

基于 RGB-D 图像的无监督深度视觉惯性里程计与在线误差校正

Unsupervised Deep Visual-Inertial Odometry with Online Error Correction for RGB-D Imagery.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2020 Oct;42(10):2478-2493. doi: 10.1109/TPAMI.2019.2909895. Epub 2019 Apr 15.

Abstract

While numerous deep approaches to the problem of vision-aided localization have been recently proposed, systems operating in the real world will undoubtedly experience novel sensory states previously unseen even under the most prodigious training regimens. We address the localization problem with online error correction (OEC) modules that are trained to correct a vision-aided localization network's mistakes. We demonstrate the generalizability of the OEC modules and describe our unsupervised deep neural network approach to the fusion of RGB-D imagery with inertial measurements for absolute trajectory estimation. Our network, dubbed the Visual-Inertial-Odometry Learner (VIOLearner), learns to perform visual-inertial odometry (VIO) without inertial measurement unit (IMU) intrinsic parameters or the extrinsic calibration between an IMU and camera. The network learns to integrate IMU measurements and generate hypothesis trajectories which are then corrected online according to the Jacobians of scaled image projection errors with respect to spatial grids of pixel coordinates. We evaluate our network against state-of-the-art (SoA) VIO, visual odometry (VO), and visual simultaneous localization and mapping (VSLAM) approaches on the KITTI Odometry dataset as well as a micro aerial vehicle (MAV) dataset that we collected in the AirSim simulation environment. We demonstrate better than SoA translational localization performance against comparable SoA approaches on our evaluation sequences.

摘要

虽然最近已经提出了许多针对视觉辅助定位问题的深度学习方法,但在现实世界中运行的系统无疑会遇到新的感官状态,即使在最丰富的训练方案下也从未见过。我们使用在线错误纠正 (OEC) 模块来解决定位问题,这些模块经过训练可以纠正视觉辅助定位网络的错误。我们展示了 OEC 模块的通用性,并描述了我们的无监督深度学习神经网络方法,用于融合 RGB-D 图像和惯性测量以进行绝对轨迹估计。我们的网络被称为视觉惯性里程计学习者 (VIOLearner),它可以在没有惯性测量单元 (IMU) 固有参数或 IMU 和相机之间的外部校准的情况下学习执行视觉惯性里程计 (VIO)。该网络学会整合 IMU 测量值并生成假设轨迹,然后根据相对于像素坐标空间网格的缩放图像投影误差雅可比矩阵在线进行校正。我们在 KITTI 里程数据集以及我们在 AirSim 仿真环境中收集的微型飞行器 (MAV) 数据集上评估了我们的网络与最先进的 (SoA) VIO、视觉里程计 (VO) 和视觉同时定位和映射 (VSLAM) 方法的对比。我们在评估序列上展示了比 SoA 更好的平移定位性能,与可比的 SoA 方法相比。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验