Suppr超能文献

SelfVIO:自监督深度单目视觉惯性里程计和深度估计。

SelfVIO: Self-supervised deep monocular Visual-Inertial Odometry and depth estimation.

机构信息

Computer Science Department, The University of Oxford, UK.

Institute of Biomedical Engineering, Bogazici University, Turkey.

出版信息

Neural Netw. 2022 Jun;150:119-136. doi: 10.1016/j.neunet.2022.03.005. Epub 2022 Mar 10.

Abstract

In the last decade, numerous supervised deep learning approaches have been proposed for visual-inertial odometry (VIO) and depth map estimation, which require large amounts of labelled data. To overcome the data limitation, self-supervised learning has emerged as a promising alternative that exploits constraints such as geometric and photometric consistency in the scene. In this study, we present a novel self-supervised deep learning-based VIO and depth map recovery approach (SelfVIO) using adversarial training and self-adaptive visual-inertial sensor fusion. SelfVIO learns the joint estimation of 6 degrees-of-freedom (6-DoF) ego-motion and a depth map of the scene from unlabelled monocular RGB image sequences and inertial measurement unit (IMU) readings. The proposed approach is able to perform VIO without requiring IMU intrinsic parameters and/or extrinsic calibration between IMU and the camera. We provide comprehensive quantitative and qualitative evaluations of the proposed framework and compare its performance with state-of-the-art VIO, VO, and visual simultaneous localization and mapping (VSLAM) approaches on the KITTI, EuRoC and Cityscapes datasets. Detailed comparisons prove that SelfVIO outperforms state-of-the-art VIO approaches in terms of pose estimation and depth recovery, making it a promising approach among existing methods in the literature.

摘要

在过去的十年中,已经提出了许多用于视觉惯性里程计 (VIO) 和深度图估计的监督深度学习方法,这些方法都需要大量的标记数据。为了克服数据限制,自监督学习作为一种很有前途的替代方法出现了,它利用了场景中的几何和光度一致性等约束条件。在这项研究中,我们提出了一种新颖的基于深度对抗学习和自适应视觉惯性传感器融合的自监督深度学习 VIO 和深度图恢复方法 (SelfVIO)。SelfVIO 从未标记的单目 RGB 图像序列和惯性测量单元 (IMU) 读数中学习场景的 6 自由度 (6-DoF) 自身运动和深度图的联合估计。所提出的方法能够在不需要 IMU 固有参数和/或 IMU 和相机之间的外部校准的情况下执行 VIO。我们对所提出的框架进行了全面的定量和定性评估,并将其性能与 KITTI、EuRoC 和 Cityscapes 数据集上的最新 VIO、VO 和视觉同时定位和映射 (VSLAM) 方法进行了比较。详细的比较证明,SelfVIO 在姿态估计和深度恢复方面优于最新的 VIO 方法,使其成为文献中现有方法中很有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验