Dong Jun, Qiu Yan, Lv Huimin, Yang Yue, Zhu Yonggang
School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
Micromachines (Basel). 2021 Feb 12;12(2):184. doi: 10.3390/mi12020184.
The transport and deposition of micro/nanoparticles in the lungs under respiration has an important impact on human health. Here, we presented a real-scale alveolar chip with movable alveolar walls based on the microfluidics to experimentally study particle transport in human lung alveoli under rhythmical respiratory. A new method of mixing particles in aqueous solution, instead of air, was proposed for visualization of particle transport in the alveoli. Our novel design can track the particle trajectories under different force conditions for multiple periods. The method proposed in this study gives us better resolution and clearer images without losing any details when mapping the particle velocities. More detailed particle trajectories under multiple forces with different directions in an alveolus are presented. The effects of flow patterns, drag force, gravity and gravity directions are evaluated. By tracing the particle trajectories in the alveoli, we find that the drag force contributes to the reversible motion of particles. However, compared to drag force, the gravity is the decisive factor for particle deposition in the alveoli.
呼吸作用下微/纳米颗粒在肺部的运输与沉积对人体健康有着重要影响。在此,我们基于微流控技术展示了一种具有可移动肺泡壁的真实尺寸肺泡芯片,用于在有节律呼吸条件下通过实验研究颗粒在人肺泡中的运输。提出了一种在水溶液而非空气中混合颗粒的新方法,用于可视化肺泡中颗粒的运输。我们的新颖设计能够在多个周期内跟踪不同力条件下的颗粒轨迹。本研究中提出的方法在绘制颗粒速度时能提供更好的分辨率和更清晰的图像,且不丢失任何细节。展示了肺泡中在不同方向的多种力作用下更详细的颗粒轨迹。评估了流动模式、曳力、重力及重力方向的影响。通过追踪肺泡中的颗粒轨迹,我们发现曳力有助于颗粒的可逆运动。然而,与曳力相比,重力是颗粒在肺泡中沉积的决定性因素。